
NASA CR-134457

N73-30141
NASA-CR-134 457) NASIS DATA EASE

ANAIGEMENT SYSTEM: IBM 360 TSS

IMPLEMENTATION- VOLUME 3: DATA SET Unclas

(Neoterics, Inc., Cleveland, Ohio.)CSCL 09B 3/08 13479
199- p HC $12.00 CSCL 09B

NAS IS DATA BASE MANAGEMENT SYSTEM - IBM 360 TSS IMPLEMENTATION

III - DATA SET SPECIFICATIONS

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151

NEOTERICS, INC.

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Lewis Research Center

Contract NAS 3-14979

, , ,.

."

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE

BEST COPY FURNISHED US BY THE SPONSORING

AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-

TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-

LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

PAGE 2

TABLE CF CONTENTS

TOPIC B - DATA EASE EXECUTIVE

B.1 EEPL/I Diagnostics 4
B.2 DBPL/I-DBPAC Interface 10
B.3 DBPAC Error Codes. 13
B,4 Mainline File Control Block. 19
B.5 List Structure 23
B.6 List Error Control Block 25
B.7 Descriptor Descriptor File 27
B.8 CEPL/I-DBLIST Interface. 55

TOPIC C - UTILITIES

C.1 NASIS.USERIDS 57
C.2 NASIS.JOINIDS. 58
C.3 EDIT.LISRMLF 59

TOPIC D - MAINTENANCE

D.1 RDBLOAD Error Codes Table.. 60
D.2 TRNSCT Descriptors 61
D.3 CORRECT Data Display Format, 63
D.4 RBLCD Error Data Set 65
D,5 Inverted Index Format 66
D.6 Descriptor Editor Data Display Format. 68
D.7 Descriptor Editor Field Name Display Format. . 70
D.8 RDELCAD Input Data Set 72
D.9 Descriptor Editor Listing Format 73
D.10 INVERT Restart File. 75
D.11 INVERT SORTIN File 76
D.12 INVERT SORTCUT File. 77
D.13 INVET PLEX file 78
D.14 INVERT RANGE File. 79
D.15 Descriptor Editor Checkpoint 80
D.16 MERGE INDEX File 82
D.17 Descriptor Editor REVIEW Display Format. . . . 83
D.18 Descriptor Editor DEFIELD Structure, 86
D.19 Descriptor Editor DESECUR. 88
D.20 Descriptor Editor DESECUR Structure. 90
D.21 Descriptor Editor DESUPER Structure. 92
.,22 Descriptor Editor DEVALID Structure. 94

D.23 Descriptor Editor DEFLD Structure. 96
D,24 Descriptor Editor DEXINIT. 99
D.25 Descriptor Editor DEX Structure.100
D.26 Descriptor Editor DERDR Structure.109

TOPIC E - TERMINAL SUPPCPT

E.1 TSPL/I Diagnostics111
E.2 Terminal Control Block114

PAGE 3

E.3 TSIEXT-TCB Declaration 118

TOPIC F - DATA FITRIEVAL

F.1 RETDATA - Retrieval Data Tble.122
F.2 EXPAND Display Format.124

F.3 SELECT Display Format..126

F.4 DISPLAY Display Format128

F.5 PARSED Table. 132
F.6 SETS Display Format.136
F.7 EXECUTE Display Format *138

P.8 PRINT Data Set Format.140
F,.9 EXPTAB - Expand Term Table . ,145
F.10 FLDTAB - Field Name Table. * *.147
F,11 FORMATS Display Format152
F.12 SETAE - Sets Table153
7.13 USERTAB - User Data Table.155
F.14 EXPLAIN Display Format . ,158
F,15 GFIEIDS Display Format159

F.16 SECFORM - Sequential Format Table160
F.17 NASISID.STPATEGY.DATASET162
F.18 SRCBTAB - Linear Search Table.164
P.19 COLFORM - Columnar Format Table 169
F.20 FIELDS Display Format..171
F.21 LIMIT Table.172
F.22 LIMIT Display Format174

TOPIC G - USAGE STATISTICS

G.1 STATIC Descriptors176
G.2 Maintenance Report Format.186
G.3 Retrieval Report Format.188
G.4 Snapshot Repocrt Format.190

TOPIC H - IMMEDIATE COMANDS

H.1 NASIS Message File192
H.2 Strategy Data Set.193
H.3 Strategy Display Format.194
8.4 Strategy Names Display Format..195
H.5 User Profile Table196
H.6 User Profile Data Set.197
H.7 VERETAE - Ccmmand Table.198

PAGE 4

TOPIC B.1 - DATA EASE EXECUTIVE

A. DATA SET NAME:

DBPL/I Diagnostics

B. CREATED BY:

DB Preprocessor Function

C. TYPE OF FILE:

(4) Table

D. ORGANIZAIICN:

Keyed List

E. KEY IDENTIFIER (CCNTROL FIELD):

Each diagnostic comment has a five-character
identification key having the form: DBnnn, where nnn
is a unique identification number.

F. RECORD LENGTH:

Variable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

DBPL/I Diagnostic Comments are generated into mainline
source programs by the DB preprocessor function (see
Section IV, Topic E.1 of the DWB).

I. DBPL/I DIAGNOSTIC COMMENTS:

DBO01 INITIALI2ATION CCMPIETE.

Informative - the % INCLUDE DB statement has been
successfully processed.

PAGE 5

DB002 'DB' FOUND WITHOUT ABGUrENT. IT IS A FESERVED
IDENTIFIER.

Severe error - a DB preprocessor function reference
has no parenthesized argument.

DB003 MISSING IEFT PARENTHESIS.

Severe error - a DB preprocessor function reference
does not begin with double left parentheses.
Processing of this DB reference was abandoned because
the closing right parenthesis would not be able to be
found.

DBOC4 ARGUMENT ABANtONED. TCO MANY EBPL/I ERRORS.

Error - more than four errors have been noted from
one DB preprccessor function reference so it is beinq
abandoned. This diagnostic may arise when the right
parenthesis are missing at the end of the argument
(PL/I passes the remainder of the source program to
the DB function).

DB005 EXTRANEOUS TEXT IGNORED.

Error - if this message immediately follows DB009,
then the statement has been processed properly but
additional clause(s) other than comments intervene
before the semicolon. Verify that the statement has
its own semicclon. If this message follows a
diagnostic other than DB009, it means merely that
part of the statement was ignored.

DB006 MISSING SEMICOLON OR CCION. 'text'

Severe error - the right parenthesis at the end of a
DB preprocessor function reference has been
encountered unexpectedly. The label or statement
"text" shown was ignored.

DB007 MISSING SEMICOLCN. 'text'

Severe error - the right parenthesis at the end of a
DB preprocessor function reference has been
encountered unexpectedly. The statement "text" shown
was ignored.

DBOO09 DBPL/I STATEMENT: 'text; comments'

Informative - a non-null statement has been found.
The "text" shcwn is the statement as internally
rearranged into a standard format without embedded
comments for further analysis. The "comments" shown

PAGE 6

are those extracted from the statement.

DB011 STATEMENT FOLLOWS FINISH.

Severe error - the statement has been ignored because
it follows the EB((FINISH;)) reference.

DBO13 STATEMENT HAS 'n' MOPE LEFT PARENTHESES THAN RIGHT
PARENTHESES.

Severe error - the statement semicolon has been found
but the rarentteses are unbalanced. The statement
was ignored.

DBO15 UNKNOWN STATEMENT KEYWORD: 'word'.

Severe error - the 'word' shown is not the first word
of a DBPI/I statement. The statement was ignored.

DB017 INVALID LISTERPOE ACTION.

Severe error - an ON LISTEPROR statement was ignored
because its action clause was neither SYSTEM nor GO
TO.

DB019 INVALID ERRORFILE.

Severe error - an ON ERRORFILE statement was ignored
because its filename was longer than eight characters
or was nct terminated by a right parenthesis.

DB021 INVALID CN CCNDITION.

Severe error - an ON statement was ignored because it
was neither ON LISTEEROR nor CN ERRORFILE. These are
the only ON statements recognized by the DB
preprocessor function.

DB023 MISSING IIST POINTER.

A GET LIST or PUT LIST statement was ignored because
it did not ccntain a required parenthesized list
pointer.

DB025 INVALID GET LIST CLAUSE.

Severe error - a GET LIST statement was ignored
because it did not contain either a KEY(O) or a KEY
INTO clause.

DB026 INVALID PUT LIST CLAUSE.

Severe error - a PUT LIST statement was ignored

PAGE 7

because it did not contain required INTERNAL KEY FRCM
clauses.

DB027 INVALIE FILE.

Severe error - a statement having a FILE clause was
ignored because its filename was lonoer than eight
characters or was not terminated by a right
parenthesis.

DB028 MISSING LIST.

Severe error - a SET statement was ignored because it
did not contain a required LIST clause.

DB029 MISSING TILE.

Severe error - a statement that should have a FILE
clause was iqnored because it did not have one.

DB030 MISSING SIZE.

Severe error - a SET LIST statement was ignored
because it did nct contain a required SIZE clause.

DB031 INVALID CN ACTICN.

Severe error - an ON ERRORFILE statement was ignored
because its action clause was neither SYSTEM nor GO
TO.

DB032 MISSING 'LIST' CE 'KEY' CLAUSE.

Severe error - a GET FILE statement was ignored
because it did not contain either a LIST or a KEY
clause,

DB033 MISSING FIELD CIAUSE.

Severe error - a statement that should have a FIELD
clause was icnoed because it did noct have one.

DB034 MISSING 'LIKE LIST'.

Severe error - a SET LIST SIZE statement was ignored
because it did not contain a required LIKE LIST
clause.

DB035 MISSING INTO.

Severe error - a GET FIELD statement was iqnored
because it did not contain a required INTO clause.

PAGE 8

DB037 MISSING FROM.

Severe error - a PUT or REPUT statement was ignored
because it did not contain a recuired FROM clause.

DB039 MORE ITEPS TRAN FIEIDS.

Severe error - excess INTO or FROM items in a GET,
PUT or REPUT YIELD statement were ignored.

DB041 MORE FIELDS THAN ITEMS,

Severe error - excess fieldnames in a GET, PUT or
REPUT FIELD statement were ignored because the INTO
or FROM clause has too few items.

DB043 INVALIE CPEN CLAUSE.

Severe error - an OPEN statement has been abandoned
because one of its substatements has an invalid or
out of order FILE, TITLE, access or function
clause.

DB045 INVALID READ CPTION(S).

Severe error - a READ statement has been ignored
because it has an invalid or out of order
file-positioning or NOLOCK option.

DB047 INVALID CLOSE SYNTAX.

Severe error - a CLOSE statement has been abandoned
because one of its suhstatements has an invalid or
cut of order FILE or ERASE clause.

DB849 MISSING FROM.

Severe error - a WRITE statement has been ignored
because it did nct contain a required FROM clause.

DB051 MISSING FEYFROM.

Severe error - a LOCATE statement has been ignored
because it did not contain a required KEYFROM
clause.

DB053 LIST OPTION MISSING.

Severe error - a FREE statement has been ignored
because it did noct contain a required LIST option.

DB055 INVALID LIST.

PAGE 9

Severe error - a FREE LIST statement has been ignored
because it did not contain a parenthesized set of
list-pointers.

DB057 'filename' FILE HAS STATEMENT DIAGNOSTIC(S).

Severe error - the FINISH statement has not generated
a Mainline File Control Block declaration (see
Section III, Topic B.4 of the DWB) for the 'filename'
shown because errors in its use have been previously
detected. Note that a missing MFCB declaration will
yield "undefined qualified name" diagnostics from the
PL/I compiler for correct DBPL/I statements using the
'filename'.

DB059 'filename' FILE HAS NON-INPUT USE(S).

Informative - the 'filename' shown has a use that may
conflict with the INPUT file function attribute.

DB061 'filename' FILE HAS NON-OUTPUT USE(S).

Informative - the 'filename' shown has a use that may
conflict with the OUTPUT file function attribute.

DB063 'filename' FILE HAS NON-UPDATE USE(S).

Informative - the 'filename' shown has a use that may
conflict with the UPDATE file function attribute.

DB065 'filename' FILE REQUIRES UPDATE ATTRIBUTE.

Informative - the 'filename' shown has a use that
requires the UPEATE file function attribute, but this
compilation does not contain a valid OPEN...UPDATE
statement for the 'filename'.

DB067 'n' DBPL/I ERROBS.

Informative - the FINISH statement has been processed
and 'N' errors were previously detected. The
programmer shculd find and analyze the 'N' DBPL/I
diagnostic comments.

PAGE 10

TOPIC B.2 - DATA BASE EXECUTIVE

A. DATA SET NAME:

DBPL/I - DEPAC Interface

B. CREATED BY:

DB Preprocessor Function

C. TYPE OF FILE:

(4) Table

D. ORGANIZAIICN:

Documentary Table

E. KEY IDENTIFIER (CCNTROL FIELD):

Not Applicable

F., RECORD LENGTR:

Not Applicable

G, BLOCKING FACIOR:

Not Applicable

H,. PURPOSE:

The DBPL/I - DEFAC Interface (see Table 1) specifies
the MFCE.STATEMENT.OPERATION code, DBPAC entry point
name, and argument types and crder for the various
DBPL/I statments and substatements. Thus, it serves to
specify for the LE preprocessor function (see Section
IV, Topic B.1 of the DWB) what MFCB assignments and
CALL statements are to be generated for each DBPL/I
statement. Conversely, it specifies for DBPAC (see
Sectiion IV, Topic B.2 of the DWB) what entry points
will be entered and what and how information will be
available at execution time for the performance of the
various statement actions.

The various entry points and their argument types are
declared by source code in SOURCE.LISMAC member
DBTEXT. Any program that includes the DB preprocessor
also is given DBTEXT by an INCLUDE statement in DB.

PAGE 11

TABLE 1.

ROUTINE OPTION OPERATION ENTRYPOINT ARG-1 ARG-2
------ CLOSE 00010000 DBPCFf---

SS CLOSE 001000 DBPACFV f
SS CLOSE ERASE 00011000 DBPACFV f
SE GET FIELD C1100000 DBPACFV f v
SE GET INTERNAL FLE 01100100 DBPACFV f r

GET INDEX KEY 01100001 DEPACFV f v
GET KEY SET 01100000 DBPACFP p v

GET SUBFILE KEY
SET 01010001 DBPACFP f p

GET LIST SET 01010000 DBPACFP f D
GET INDEX LIST

SET 01010001 DBPACFP f p
GET SUBFILE LIST

SET 01010010 DBPACFP f p
GET RECORD C1000000 DBPACFR f r
LOCATE 11010000 DEPACFV f v
LOCATE SUEFILE 11010010 DBPACFV f

SS OPEN 00100000 EBPACFV f
SE PUT FIED 10010000 DBPACFV f v

READ KEY 11100000 DBPACFV f v
READ KEY NOLOCK 11100100 DBPACFV f v
READ INDEX KEY 11100101 DBPACFV f v
READ SUBEFILE KEY 11100010 DBPACFV f v
READ SUBFILE KEY

NOLOCK 11100110 DBPACFV f v
READ PER SUBFILE 11101010 DBPACFV f v
HEAD PER SUEFILI

NOLOCK 11101110 DBPACFV f
READ LIST 11101000 DBPACFP* f p
READ LIST NOLCCK 11101100 DBPACFP* f p
READ seq. 11110000 DBPACFV f
READ seq. NOLOCK 11110100 DBPACFV f
READ INDEX seq. 11110101 DBPACFV f
READ SUBFILE seq. 11110010 DBPACFV f
READ SUBBILE seq.

NOLOCK 11110110 DBPACFV f
READ BACK 11111000 DBPACFV f
READ BACK NOLCCK 11111100 DBPACFV f
FEAD INDEX BACK 11111101 DBPACFV f
READ SUBFILE BACK 11111101 DBPACFV f
READ SUEFILE FACK

NOLOCK 11111110 DBPACFV f
SE REPUT FIELD 10100000 DBPACFV f v

UNLOCK 11000000 DBPACFV f
UNLOCK SUEFILE 11000010 DBPACFV f
WRITE 10000000 DBPACFR f r

PAGE 12

SS = substatement
SE = statement element
f = filename
p = list pointer
r = record work area
v = character string

*For READ IIST <NCIOCK> with the KEY (nn) clause, use
entry point DBPACPF and a fullword subscript value as
the third argument.

PAGE 13

TOPIC B.3 - DATA BASE EXECUTIVE

A. DATA SET NAME:

DBPAC Error Codes

B. CREATED BY:

RDBPAC Posts in ~FCB.EBRCE.ONCODE.

C, TYPE OF FILE:

(4) Table

D. ORGANIZATICN:

Sequential

E. KEY IDENTIFIER (CCETRCL FIELD):

Error-code

F. RECORD LENGTH:

Not Applicable

G, BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The data base executive was written with the intent of
handling all data tase interfaces with the users of the
NASIS system.

This is handled by the user writinq a PL/I program and
in it using the DEPL/I language extension to handle all
of the input/output operations to the data base.

When the user's program is running, the data base
executive will attempt to detect any and all errors
which occur and ccmmunicate these errors back to the
user's program.

The method of performing this communication of errors
is through the use of the data base executive error
codes. These are fixed binary numbers which have
unique meanings and are transmitted back to the user's
program using the MECB (mainline file control block) as
a vehicle of communication.

PAGE 14

ERROR
CODE EXPLANATICON OF ERROR
----- ---- ----- ---- ----- ---- I -- ---- ----- -------

01 Illegal attempt to imply open.

03 Tried to imply an open on a new file-name without
the use of an open command.

20 Trying to open a file when the header descriptor's
DESCOK switch is off.

21 Trvinq to open for OUTPUT or UPDATE and the file
is not the anchor or an associate or a descriptor
file.

22 End-of list (FEAD LIST Statement).

23 Number of files exceeds the number allowed in the
MFCE file array.

25 The user is not the owner of the file, but he is
attempting an open for UPDATE or OUTPUT.

26 Attempted open of the file for INPUT, the DATA
switch indicates no data.

27 Open attempted but its function was not INPUT,
OUTPUT, or UPEATE.

28 Open issued for UPDATE or OUTPUT was prohibited by
the HNTNING, PETNABLE, or the DATA switch.

30 Operation code error.

31 Key field failed general validation (READ KEY or
LOCATE).

32 Key field failed specific validation (READ KEY or
LCCATE).

34 Erase attempted on CLOSE but the file is not open
for UPDATE.

35 Erase attempted on descriptor file other than the
anchor.

36 The GET FIELD operation attempted but the last
record operation was a LOCATE.

38 The GET FIELD operation attempted but there is no
current record.

PAGE 15

39 GET RECORD operation attempted but the user is not
the owner.

40 GET LIST attempted, but file is not inverted
index.

41 Key is null (EEAE KEY or LOCATE).

42 Key sequence error (LOCATE sequential).

43 Duplicate key error (LOCATE direct).

44 Not an OUTPUT file for WRITE.

46 No current record (PUT or REPUT).

47 Current record nct locked (PUT or REPUT).

49 PUT or REPUT to INPUT file.

50 REPUT to non-UPDATE file.

51 REPUT following LOCATE.

52 GET operation (field is not in descriptor
tatle).

53 Field failed general validation (PUT or REPUT).

54 Field failed special validation (PUT or REPUT).

55 Null value to be PUT.

56 Bit field too long (PUT or REPUT).

57 PUT toc non-null bit switch.

58 PUT tc non-null fixed length field.

59 PUT to non-null variable length (single element)
field.

61 Field would make record too long (PUT).

62 Field would make record too long (REPUT).

63 Element would make record too long (PUT).

64 Element would make record too long (REPUT).

65 Element field too long (PUT or REPUT),

66 Too many (variable) elements (PUT).

PAGE 16

67 No GET before REPUT (variable elements).

68 No gocd GET before REPUT (variable elements).

69 Undefined field (FUT or REPUT).

70 REPUT to never PUT (null) field (record not
found).

71 Too many (fied) elements (PUT).

72 (Fixed) element would make record too long
(PUT).

73 No GET before REPUT (fixed elements).

74 No good GET before REPUT (fixed elements).

75 Field too long (PUT or REPUT).

76 Key would wake cross reference record too long
(PUT or REPUT).

77 Cross reference not found on record.

78 Target field 'actual' length checking indicates
truncation.

79 Command system trying to open someone elses STATIC
or TRNSCT dataplexes for UPDATE or OUTPUT.

80 Command system opening a dataplex (other than
STATIC or TRNSCT) for either OUTPUT or UPDATE.

83 GET KEY incompatible with list.

84 GET KEY sequence error.

85 Field length less than 2 found. Data Base
damage.

86 Field length beyond reclen found. Data Base
damage.

87 Field length not equal to 2 plus a multiple of
element length found. Data Base damage.

88 Element length less than 1 found. Data Base
damage.

89 Element length beyond field length found. Data
Base damage.

PAGE 17

90 Invalid DB2 header descriptor. DB1 descriptor or
damage.

91 Field descriptor reclen less than 78. Descriptor
damage.

92 Field length less than 2 in descriptor.
Descriptor damage.

93 Field length beyond reclen in descriptor.
Descriptor damage.

94 VALIDARG longer than 50 bytes would be truncated.
Descriptor damaqe.

95 SECURITY field length invalid. Should be 2 olus a
multiple of 8.

96 No descriptor found for key field. Descriptor
damage.

97 Invalid field length in index record found. Data
base damage.

98 Record missing from index region. Data base
damage.

99 End of data. (VISAM)

104 Keys equal - sequence error. (VISAM+100)

108 Key not found. (VISAM+100)

112 Keys out of sequence. (VISAM+100)

115 Keys do not coincide. (VISAM+100)

120 Keys coincide. (VISAM+100)

124 Invalid retrieval address. (VISAM+100)

128 Invalid record length. (VISAM+100)

131 Position past end of data set. (VISAM+100)

136 Position before start of data set. (VISAM+100)

140 Exceed maximum number of overflow
pages, (VISAM+100)

144 Exceed maximum size of shared data set.(VISAM+100)

145 No data set-name found which is like the given

PAGE 18

one.(VISANM)

200 Attempt to (FUT or REPUT) null pattern.

201 Attempt to (rFT or REPUT) to readonly field.

202 Undefined subfile or indexed field (READ, LOCATE,
or UNIOCK).

203 Not an indexed field.

204 Not a subfile <control> field.

205 LOCATE to INPUT file.

206 No current anchor record (LOCATE SUBFILE).

207 Anchor record not locked (LOCATE SUBFILE).

208 No current sutrecord (READ PER SUBFILE).

209 Anchor record not current (delete subrecord).

210 The file is not open (to post FLDTAB).

211 Descriptor damage detected while posting FLDTAB.

212 Anchor record not locked (delete subrecord).

213 Anchor record not parent of subrecord (delete
subrecord).

214 Subrecord id not found in control field (delete
subrecord).

215 Duplicate fixed length element (PUT or REPUT).

216 Duplicate varying length element (PUT or REPUT).

217 LOCATE SUBFILE not done because 131071 regions
used.

218 NAMEFLD field length invalid. Should be 2 plus a
multiple of 9.

219 GET superfield requires current subfile record.

220 RSECTYCE field length invalid. Should be 2 plus a
multiple of 9.

221 Non-owner attempted to open associate having
record level security.

PAGE 19

TOPIC B.4 - DATA BASE EXECUTIVE

A, DATA SET NAME:

Mainline File Ccntrol Block

B. CREATED BY:

Declared by LB Preprocessor Function.

C. TYPE OF FILE:

(4) Table

D. ORGANIZATION:

Linear structure followed by an array of linear
structures.

E. KEY IDENTIFIER (CCNTBCI FIELD):

Within DEPAC the mainline file control block is a
parameter named MFCB. Outside DBPAC each mainline file
control block is an independent external controlled
structure whose name is the DBPL/I file name (PLEX in
the retrieval system). For this reason, file names
must not conflict with other external name system.
This file name is not padded with dollar signs the way
a file title must be. The file name is passed as an
argument in CALL statements to DBPAC and thus becomes
the MFCB parameter.

F. RECORD LENGTH:

1324 bytes (hexadecimal 52C)

This is the length of the whole control block including
the necessary dope vectors and a thirty-seven element
array allowing up to thirty-seven data sets in a data
base. The number of elements in the array may be
adjusted, if necessary: - the control block size will
be adlusted by 24 bytes per element and the
MFCB.FILE.ARR_SIZE field must be suitably initialized
but no changes are necessary in DEPAC or in other
MFCE's.

G. BLOCKING FACTOR:

Not Applicable

PAGE 20

H. PURPOSE:

The NFCB control block is used for communication
between mainline programs and DBPAC. For DBPL/I
statements in the mainline, the DB preprocessor
function generates statements that post fields in the
MFCB , such as the operation code. At execution time,
the posted MFCB is passed as an argument to DBPAC.
DBPAC performs the operation indicated in the MFCB,
making reference to other fields in the MFCB as
necessary and posting fields in the MFCB, such as
MFCB.ERROR.ONCODE, which may subsequently be referenced
in the mainline.

I. PL/I DECLARATICN:

DECLARE
1 MFCB, /*MAINLINE FIlE CONTROL BLOCK*/
2 INITIALIZEr BIT(2), /*00: NEVER INITIALIZED */

/*10: INITIALIZED, CLOSED */
/*11: INITIALIZED, OPENED */

2 FILLER_ 1 EIT(6), /*NOT USED */
2 STATEMENT, /*C FUNCTION */

3 OPERATION BIT(8), /*CODE */
3 ONFIELD CHAR(8), /*FIELD NAME /

2 FILLER_2 CEAR R(3), /*NCT USED */
2 ERROR,

3 SYSTEM BIT(1), /*1: STANDARD DBPAC ACTION */
/*0: USER ERROR ROUTINE */

3 FILLER_3 EIT(7), /*NCT USED */
3 ONCODE FIXED BINARY,
3 ROUTINE LABEL, /*USER'S */
3 ONRETURN LABEL, /*IN MAINLINE */

2 FILE,
3 ONFILE CHAR(8), /*FILE TITLE */
3 OLFILE CHAR(8), /*TC SAVE FILE TITLE IF DYNAM*/
3 OWNER_ I CHAR(8), /*OWNER OF THE FILE
3 DSNAME CHAR(35), /*DATA SET NAME */
3 ATTRIBUTES

4 ACCESS EIT(1), /*0: DIRECT */
/*1: SEQUENTIAL */

4 SAVE FUNC BIT(2), /*TO SAVE FUNCTION IF DYNAMIC*/
4 FILLER 4 BIT(3), /*NCT USED */
4 FUNCTION BIT(2), /*10: INPUT "/

/*01: OUTPUT */
/*11: UPDATE */

3 CURRENTFIIE TIXED BINARY,/*SUBSCRIPT IN FILE.ARRAY*/
3 LAST_FILE FIXED EINARY,

/*NUMBER OF FILES IN FILEPLEX OR DATAPLEX*/
3 ARR SIZE FIXED BINAY(15),/*DECLARED ARRAY SIZE */
3 ARRAY (37),

4 FILE_NAME CHAR (8),
4 DTP POINTER, /*DESCRIPTOR TABLE ADDRESS */

PAGE 21

4 FCEP PCINTER, /*FILE CONTROL BLOCK ADDRESS */
4 KYC FIXED BINAFY(15),/*SUBSCRIPT OF KEY FIELD */

/*DESCRIPTOR IS ALWAYS =1. /
4 SWITCHES,

5 CURRENT BIT(1),
5 LOCKED BIT(1),
5 WRITE BIT(1), /*FOPCE WRITE */
5 REWRITE BIT(1), /*FCRCE REWRITE */
5 ABSENT BIT(1), /*NULL OR SECURED RECORD */
5 OPENED BIT(1), /*THE FILE IS OPEN */
5 FILLER 5 EIT (2), /*NCT USED */

4 FILLER_6 CHAR(1), /*NOT USED */
4 RECORDCT FIXEC BINAEY(15);/* # OF USABLE DESC. */

S DETAIL NOTES:

INITIALIZEr - used entirely within DBPAC.

STATEMENT.CPERATICN - see Section III, Topic B.2 of the
DWB for the codes that are posted here by the DB
preprocessor function.

STATEMENT.CNFIELD - posted by the DB preprocessor
function.

ERROR.SYSTEM - posted by the DB preprocessor
function.

ERROR.ONCODE - posted by DEPAC when an error is
detected but not reset for successful
operations. See Section III, Topic B.3 of the DWB
for the DBPAC Error Codes.

ERROR.ROUTINE - posted by the DB preprocessor
function.

ERROR.ONEIURN - posted by DBPAC when an error is
detected.

FILE.ONFILE - posted by the DB preprocessor function.
When the first character is not a pound sign
indicating a descriptor file, DBPAC shifts the
value one character to the right and posts a
leading black character.

FILE.OLFILI - used within DBPAC to detect need for
reinitialiation.

FILE.OWNERID - used within DBPAC.

FILE.DSNAME - used within DBPAC.

FILE.ATTEIEUTES.ACCESS and FUNCTION - posted by either

PAGE 22

the DE preprocessor function or, when in default,
by DBPAC.

FTLE.SAVE FUNC - used within DBPAC.

FILE.CURRENTFILE - used within DBPAC.

FIL.LAST FILE - used within DBPAC.

FILE.ARRPSIE - set by the DB preprocessor function
indicatinq the dimension of the FILE.ARAY.

FILE.AFRAY - this array is used within DEPAC. Each
element of the array is a linear structure of
fields relating to a data set. When the mainline
is accessing a descriptor region or an inverted
index, only the first element is used. Otherwise,
the first element relates to the! anchor data set
and subsequent elements relate to associated and
sutfile and inverted index data sets.

FILE.ARRAY.FILE NAME - the "title" of the data set
having a leading blank or pound siqn and a
trailing blank or suffix.

FILE.ARRAY.DTP - the address of the (dynamically
allocated) descriptor table for this data set.

FILE.ABRAY.FCBP - the address of the (dynamically
allocated) file control block for this data set.

FILE.ARRAY.KYC - the subscript of the key field
descriptor in the descriptor table array is always
1.

FILE.ARRAY.KYC(1) - one (the anchor) plus the number of
associate data sets.

FILE.ARBAY.KYC(2) - KYC(1) plus the number of subfile
data sets.

FILE.ARRAY.SWITCFES - switches used by DBPAC for the
status of the data set.

FILE.ARRAY.RECORDCT - the number of descriptors in the
descriptor table array. This number does not
include descriptors of fields a given user does
not have field security clearance to access.

PAGE 23

TOPIC B.5 - DATA BASE EXECUTIVE

A. DATA SET NAME:

List Structure

B. CREATED BY:

RDBPAC and RDBLIST

C. TYPE OF FILE:

(4) Table

D. ORGANIZATION:

Structure ccntaininq and adjustable array

E. KEY IDENTIFIER (CCITRCL FIELD):

Not Applicable

F. RECORD LENGTH:

40 byte prefix pits number-of-keys times internal key
length

G. BLOCKING FACTOPR

Not Applicable

H. PURPOSE:

The list structure includes the primary list of keys
and all supportinq information. The list seqments
created by the data base executive are all linked
together by the PREV pointer and the NEXT pointer.

I. PL/I DECLARATION:

DECLARE
1 LIST BASED(LIST_PTR), /*MAIN STORAGE KEY LIST*/
3 PREFIX,

5 CHAIN, /*CONNECTING SEGMENTS */
7 PTR, /*NULL: END OF CHAIN */

9 PREV PTR, /*BACKWARDS CHAIN */
9 NEXT PTR, /*FORWARDS CHAIN */

7 CONTINUED BIT(1), /*NEXT SEGMENT IS */
/*CONT. OF THIS ONE? */

5 SPARE BIT(31), /*NOT USED */
5 STRING_SIZE FIXED BIN, /*CNLY POSTED BY ALLOC.*/
5 KEY,

PAGE 24

7 MAX COUNT FIXFI BIN, /*COUNT LIMT THIS SEGMT*/
7 COUNI FIXED BIN, /*KEYS PER THIS SEGMT */
7 CURSOR, /*FOR THIS SEGMT */

9 READ FIXED BIN, /*FOR READ PER LIST */
9 GET FIXED BIN, /*FOR GET KEY

7 SIZE FIXED BIN, /*BYTES PER KEY */
7 FIELDNAME CHAR(8), /*KEYICONTRL FLD NAME

/*KEYS APPLY TO
7 CONVERSION CHAP(8), /*BTN NARE FOR OUTPUT */

/*NULL VALUE: NONE */
3 KEYS CHAR(IIST STRING SIZE /*CHAP(KEY.SIZE *

REFER(LIST.STRING SIZE)); /*MAXCOUNT) */

PAGE 25

TOPIC B.6 - DATA BASE EXECUTIVE

A. DATA SET NAME:

LISTERB - list Errcr Control Block

B. CREATED BY:

Allocated by RDBMIT.

Error fields are posted by DB preprocessor and RDBLIST.
List chain anchors are initialized by RDBMTT and posted
by RDBPAC and PDBLIST.

C. TYPE OF FILE:

(4) Table

D. ORGANIZATICN:

Simple structure

E. KEY IDENTIFIER (CCNTROL FIELD):

Not applicable

F. RECORD LENGTH:

68 bytes (20 bytes data + 48 bytes PL/I dope vectors,
etc.)

G. BLOCKING FACTOR:

Not applicable

H. PURPOSE:

The list error control block holds the list segment
chain anchors. (The chain used by the FREE all LISTs
statement.) It also is the point of communication
between RDELIST and mainline programs for list error
handling when no MFCB is involved in the operation.
(When an MFCB is involved in a list error situation,
the MFCB is used for error indication, etc.)

I. PL/I DECLARATION:

DECLARE

1 LISTERB CTL EXT, /*COMMON CONTROL BLOCK */
3 ERROR,

5 SYSTEM BIT(1) /*1: SYSTEM ACTION */

PAGE 26

INIT('1'B), /*0: GC TO USER ERROR RTNE */
5 ONCODE FIXED BIN(15) /*1: INVALID LIST OPERATION */

INIT(0), /*2: INCOMPATIBLE LISTS */
/* GET LIST KEY SET ERRORS: */
/*4: NUIL INPUT LIST */
/*5: NO GET KEY SINCE RESET */
/*6: INCOMPATIBLE LISTS */
/* GET LIST KEY INTO ERROR: */
/*7: KEY SEQUENCE ERROR */
/*8: TRUNC, TARGET TOO SHORT*/
/* SET LIST LIKE LIST ERROR:*/
/*9: INVALID SIZE */
/* PUT LIST KEY FROM ERRORS:*/
/*10: NULL TARGET LIST /
/*11: WRONG LENGTH KEY VALUE*/
/*12: KEY SEQUENCE ERROR

5 ROUTINE lABEL /*USER ERROR RTNE ADDRESS */
3 PTR, /*NULL: NO CHAIN */

/*ALLOCATOR MUST INITIALIZE */
5(FIRST, /*FORWARD CHAIN ANCHOR */
LAST) PTR; /*BACKWARD CHAIN ANCHOR */

PAGE 27

TOPIC B,7 - DATA BASE EXECUTIVE

A, DATA SET NAME:

Data base rescriptcr File,

for example:

SACWNEF.ASRDI$,ASREI$#

where:

"ownerid" is the 1-8 character TSS identification of
the owner of the data base.

"data base" is the 6 character data base name with the
dollar sign character used for padding.

B. CREATED BY:

RDBEDIT - the Descriptor Editor program

C, TYPE OF FILE:

(6) Data Ease Descriptor file

D. ORGANIZATION

VISAM - Virtual Indexed Sequential Access Method
(TSS) - organized in one or more regions of contiquous
records; one region for the anchor data set
descriptors and, as necessary, a region for each
associate, subfile and inverted index dataset's
descriptors.

Records have the varying length universal record format
(URF) built by DEPAC.

E. KEY IDENTIFIER (CCNTEOL FIELD):

The VISAM key length is 15 bytes consisting of:

7 character region name and 8 character FLENAME.

A DBPL/I descriptor FILE is a contiguous set of records
havinQ the same region name. The DBPL/I FILE shall be
OPENed using an 8 character TITLE value consisting of:

1 pound sign character (#) (signifying descriptor
file).

6 character data base name with the dollar siqn

PAGE 28

character ($) used for padding.

1 suffix character.

The suffix character shall be from the following
ranges:

blank anchor file descriptors
1-9 associate file descriptors
Z-O sutfile descriptors
A-P inverted index descriptors

DBPAC uses the data base name and suffix to
automatically generate the region name value for the
keys.

The DBPL/I KEY value is only the 8 character FLDNAME
(name of the field being described) that completes the

VISAM key value.

F. RECOPD LENGTH:

34 bytes minimum for a file descriptor record.
78 bytes minimum for a field descriptor record.

G. BLOCKING FACTORS:

One 4096 byte pace (block) will hold about 40 average
descriptors: enough for a few regions for a simple data
base. For a complicated data base with many data sets,
fields, seccndarv fields, and security codes, three or
more pages (blocks) may be required.

H. PURPOSE:

A data base descriptor file describes a data base in
terms of the datasets, records, and fields the data
base is composed of, and indicates their
interrelationships. A data base descriptor file is
created and maintained or modified by RDBEDIT, the
descriptor editor, which is a system service program.

Then the data base may be loaded, maintained,
retrieved, etc. by programs using RDBPAC for data base
access. EDEPAC, when OPENino a data base, reads the
descriptor file and from it builds a table that governs
its further actions.

I. SAMPLE DATA BASE:

A sample data base is used to illustrate in detail how
the descriptors shall describe a complicated data base.
See Figure 1.

PAGE 29

The record lavout in Figure 2 shows all eight record

layouts in the sample data base for reference in the

following secticns of this specification.

J. DESCRIPTOR REGICNS:

The sample descriptor file consists of eight regions
(having the suffixes I ',1,Z,Y,A,B,C,D) corresponding
to the eight data sets in the sample data base. (Of
course VISAM alphabetizes them ' .,A,B,C,D,Y,Z,1,.)

Each descriptor region has at least one file descriptor
record and two field descriptor records (key and
RECLEN).

Dummy descriptor records are required in anchor regions
when the data tase has associate and/or subfile
datasets. They are also required in associate reoions
when sutfile(s) are controlled from the associate
dataset.

Figure 3 tabulates all the file, field, and dummy
descriptors required tc describe the sample data
base.

K. FILE DESCRIPTOR RECORD:

The file descriptor record describes the dataset as a
whole. It is uniquely identified by having a key
(FLDNAME) of 8 blanks. It has the field values shown
below. See Figure 4 for the field values of the sample
descriptor file. All values should be posted except
that if RECSECFP is NULL, RSECTYCD does not apply.

FIELD VALUE COMMENTS

FLDRAME 8 blanks DBPL/I key

DESCOK OFF incomplete descriptors.
ON descriptors are complete.

FILETYPE ANCHOR type of data set being described
ASSOCIATE
SUBFILE
INDEX

DESCRCT numeric number of field descriptors in
this region. (The file
descriptor is not to be
counted.)

ESELNGTH numeric length in bytes of fixed portion

PAGE 30

of records including RECLEN, key
and fixed primary fields. For a
spanned index, this includes the
key suffix byte.

SPANNEE OFF ordinary records.
ON spanned records with internally

suffixed keys.

DATA OFF no data on file yet.
ON retrieval is possible.

MNTNABLE ON maintenance is allowed.
OFF maintenance is prohibited.

MNTNING OFF no maintenance is in progress.
ON maintenance is in progress.

LOADABLE ON loading is allowed.
OFF loading this data set is

prohibited.

RECSECFP null records do not have a record
security field.

numeric offset in bytes of record secur-
ity field in records.

RSECTYCD 9 byte
elements zero or more record level

security codes.
8 alphameric record security password.
1 byte mask fcr comparison with record

security field.

L, FIELD DESCRIPTOR RECORDS:

A field descriptor record indicates that a particular
named field occurs in the dataset being described. It
is uniquely identified within the region by having a
key (FLDNAME) that is the name of the field. There are
two kinds of field descriptors:

primary direct
secondary (direct and indirect)

All field descriptor records may have the values shown
below:

FIELD VALUE COMMENTS

FLDNAME 8 alphamerics unique field name. DBPL/I
tlank padded key.

PAGE 31

GENERCRT 8 alphamerics name of generic routine for
blank padded testing input values.

VALIDRTN 8 alphamerics name of routine for testinq
blank padded and/or convertinq input

values.

VALIDARG 0-50 bytes argument to be supplied
to VALIDRTN

NUMALIGN OFF string alignment, left jus-
tification

ON numeric alignment, right
justification

REFORMAT 8 alphamerics name of routine for con-
blank padded verting output values.

SECURITY 8 alphamerics 0-18 field security pass-
asterisk padded words

GENERCRT, VALID2RN, VALIDARG, and NUMALIGN may even be
posted for secondary (read only) fields because linear
search, for example, may have to transform values to be
used as cofrarands.

. PRIMARY EIRTCT FIELD DESCRIPTOR BECORDS:

A primary direct field descriptor record describes a
maintainable field that occurs on each record of the
dataset being described. There are five kinds of
primary fields:

single fixed bit
sinqgle fixed byte
single varying byte
multiple fixed byte
multiple varying byte

In addition to the field values shown in Section L, all
primary descriptors have READCNLY OFF and a selection
of the following field values.

FIELD VALUE COMMENTS

READONLY OFF field value may be maintained
(PUT and REPUT.)

VARFLD FIXED fixed length field in fixed
portion of records.
portion of records.

PAGE 32

BITFLD CFF byte field
ON bit field

FLDPOSIT numeric if VABFLD is FIXED, offset in
bytes of field.
if VARFLD is VARYING, relative
field in variable portion of
records.

FLDLEN numeric if BITFLD is ON, offset of bit
(0,2,4 or 6) in byte specified
by FLDPOSIT.
if VABFLD is FIXED, internal
length of field in bytes.
if VARFLD is VARYING, maximum
internal length of field in bytes
with internal field length prefix.

ELTLIM 0 field does not have elements.
numeric maximum number of elements to be

PUT into field or, for a control
field, maximum number of sub-
records per parent record.

ELTLEN numeric if VARELT is FIXED, internal
length of elements in bytes.
if VARELT is VARYING, maximum
internal length of elements in
bytes with internal element length
prefix.

VARELT FIXED fixed length elements.
VARYING varying length elements.

UNIQUELT OFF duplicate element values are
allowed.

ON internal element values must be
unique,

INVFILE alphabetic descriptor region suffix for
inverted index dataset. (null
if none.)

INDEXEXT OFF index internal values of field.
ON index external values of field.

(External length may require
index key length greater than
internal length.)

A single fixed bit field descriptor has:

VAPFL FIXED
BITFLI CN

PAGE 33

FLDPOSIT offset in bytes
FLDLEN offset in bits (0,2,4 or 6)
INVFILE null (may not be indexed)

See VERAIRCD in the sample data base.

A single fixed byte field descriptor has:

VAPFLD FIXED
BITFLt OFF
FLDPOSIT offset in bytes
FLDLEN internal length in bytes
INVFILE optional if FLDLEN less than 254

See EMPPAYCI, EM~INSCL and VEHMAKE in the sample
data base.

A single varying tyte field descriptor has:

VARFLr VARYING
FLDPOSIT relative varying field
FLDLEE maximum internal length including

internal 2 byte field length prefix
ELTLIM 0 (zero)
INVFILE optional if (FLDLEN-Z) less than 254

See KIENAME in the sample data base.

A multiple fixed byte field descriptor has:

VARFLD VABYING
PLDPOSIT relative varying field
FLDLEN maximum internal field length including

internal 2 byte field length prefix
ELTLIM maximum number of elements
ELTLEN internal element length in bytes
VARELT FIXED
UNICUELT optional
INVFILE optional if ELTLEN less than 254

See the EMPFID and EMPVEH control fields in the
sample data base.

A multiple varying byte field descriptor has:

VARFLD VARYING
FLDPOSIT relative varying field
FLDLEN maximum internal field length including

internal 2 byte field length prefix and
internal 1 byte element length prefixes

ELTLIM maximum number of elements
ELTLEN maximum internal element length includ-

ing internal 1 byte element length

PAGE 34

prefix. VARELT VARYING
UNIQUEL~ optional
INVFILE optional if (ELTLEN-1)less than 254.

See the KIEPET field inthe sample data base.

CONTROL FIELD DESCRIPTCRS

Every descriptor region must have a key descriptor for
the field that uniouely identifies records in a
dataset. It is a primary direct field descriptor
record for a single fixed byte field.

SECURITY must be null.
READONIY is OFF
VARFLE is FIXED
BITFLi is OFF
FLDPOSIT is 4
INVFIIE must be null

Each associate key descriptor is identical (except the
region suffix) to the anchcr key discriptor. See the
EMPNAME field in the sample data base.

Each subfile dataset in a data base requires:

1. a control field in the anchor or an associate
dataset

2. a separate descriptor region for the subfile
dataset containqing:

2a. file descriptor record
2b. BECLEN secondary descriptor record
2c. subrecord id key descriptor record
2d. parent key secondary descriptor record
2e. descriptcr records for other subrecord

fields.

1. A subfile control field descriptor describes a
secondary multiple fixed byte field maintained by
RDEPAC.

FIDNAME is a six-character name suffixed
by two blanks applying to the
subfile.

GENEPCRT is EBCVTID
VAIIDPTN is null
NUMALIGN is ON
REFORMAT is DBFMTID
SECURITY is cptional
READCNLY is CN
VARFLE is VARYING
FLDPOSIT is relative varying field

PAGE 35

FIDLEN is maximum internal field length
ELTLIM is maximum number of elements.

Note that FLDLEN or ELTLIM limits
the maximum number of subrecords
per parent record.

ELTLEV is 3
VAREIT is FIXED
UNIQUELT is ON
SUBCNTDI is CN
SUBFILE is alphabetic character descriptor

region suffix for subfile dataset.
INVFILE must be null

See EMPKID and EMPVEH in the sample data base.

2a. A subfile file descriptor record has:

FILETYPE SUEFILE

2b. A subrecord RECLEN descriptor is standard.

2c. A subrecord id key descriptor describes a primary
single fixed byte field:

FLENAME is the six-character subfile name
suffixed by "ID".

GENERCRT is EBCVTID
VALIDRTN is null
NUMALIGN is CN
FEFORMAT is DBFMTID
SECURITY must be null
READONLY is OFF
VARFID is FIXED
EITFLD is OFF
FIDPOSIT is 4
INVFILE must be null

See EMPFIDID and EMPVERID in the sample data base.

2d. A subrecord parent key descriptor describes a
secondary sinqle fixed byte field.

FLDNAME is the six-character subfile name
suffixed by "PK",

GENEPCRT, VALIRTN, NUMALIGN, REFORMAT and
FIDIEN are the same as the anchor
key descriptor.

SECURITY is optional
READONLY is ON
VARFID is FIXED
eITFLD is OFF
FLDPOSIT is 7
INVFILE must be null

PAGE 36

See EMPKIDPK and EMPVEHPK in the sample data base.

2e. Record level security may be independently
specified for the anchor, associate and/or subfile
datasets. It may not be specified for an inverted
index dataset. Each dataset to have record level
security must have:

RECSECFP field position of record security
field

RSECTYCD optional

in its file descriptor record and a primary direct
field descriptor record for a single fixed byte
field as shown in Figure 5 and as follows:

FLDNAME RECSEC suffixed by the descriptor
region suffix (blnak for the
anchor and a blank.

GENERCRT DBCVTHX
VALIDARG null
NUMALIGN OFF
BEFORMAT EEPFTHX
SECUIRTY optional
BEAEONLY OFF
VARFID FIXED
EITFLD OFF
FLDPOSIT on anchor or associate datasets,

after the key (ie. 4 + key FLDLEN +
1). on subfile datasets, after the
parent key field (ie. 4 + 3 +
parent key FLDLEN + 1).

INVFILE optional

See the RECSEC, RECSEC1, EMPKIDRS and EMPVEHRS
fields in the sample data base.

., SECONDARY READCNLY FIELD DESCRIPTOR RECORDS:

A secondary field descriptor record describes a derived
field made up cf cne or more component fields. There
are two types: direct and indirect.

A direct secondary field descriptor redescribes Dart of
all of one primary field or a field automatically
maintained by RDEPAC such as RECLEN and subfile control
and parent key fields. A direct secondary descriptor
has the same field values as a primary descriptor with
the following qualifications:

REALONLY is always ON. Field may only be
retrieved (GET).

PAGE 37

INVFIIF must be null.

FLDPOSIT and FLDLEN will specify an internal
location within or equal to a primary field.

Otherwise, the descriptor fields may specify a direct
secondary field like any of the five types of primary
fields. A seccndary of the same type of length
provides renaming and perhaps an alternate PEFORMAT. A
secondary "single fixed byte" with a shorter FLDLNGTH
provides for subfields. A secondary "single varying
byte" redefininq a primary "multiple fixed byte"
obtains the concatenation of the internal element
values.

Every descriptor region shall have a secondary direct
field descriptor for a single fixed byte RECLEN as
follows:

FLDNAME is RECLEN
GENERCRT is CBCVTPL
VALIDRTN is null
NUMALIGN is ON
REFORMAT is DBFMTBI
SECURITY is optional
READONLY is ON
VARFLE is FIXED
BITFLD is OFF
FLDPOSIT is 0 (zero)
FLDLEN is 4
INVFILE must be null

(No dummy descriptors are used for RECLEN. Direct
secondary descriptors may be specified by the Data Base
Analyst to provide unique field names for the various
RECLENs in a data base.)

An indirect secondary field descriptor describes a
"superfield" make up of one or more primary or direct
seccndary component fields. No more than one of the
component fields may be a multi-element field. The
component field values will be concatenated in NAMEFLD
order for retrieval. (If there is a multi-element
component field, then the superfield will yield
multiple values.) An indirect secondary descriptor has
the field values shown below.

FIELD VALUE CCFMENTS

READONLY ON field may only be retrieved

NAMWFLD 9 byte one to 16 component field

PAGE 38

elements specifications
hex '00' use external value of

component
hex '80' use internal value of

component
followed by primary or direct secondary
8 alohmerics component fieldname
blank padded

REFORMAT 8 alphamerics name of routine for
converting

blank padded concatenated output value

If the component fields specified in NAMEFLD are all
from the same dataset (anchor, associate or subfile),
then the indirect secondary descriptor goes in the
descriptor region for that dataset. (Dummy
descriptor(s) are required for the indirect secondary
descriptor if it is on an associate or subfile.) See
the KIDIE field in the sample data base.

If the componenets are from an associate file and from
a subfile controlled from that associate file, then the
indirect secondary descriptor goes in the descriptor
region for that associate.

Otherwise the indirect secondary descriptor goes in the
anchor descriptor region and no dummy descriptors are
required. See the EMPTYPE field in the sample data
base.

If any component is from a subfile dataset, the (1.) no
components may be from any other subfile dataset and
(2.) to GET such a field, a mainline program must first
obtain a current record in the subfile -- FDBPAC will
automatically ensure that the parent and associate
record(s) are available when required.

Every anchor and associate descriptor region shall have
a secondary indirect field descriptor for the key
field, see Figure 6.

FLrNAMT is 'FILEKEY '
READONLY is ON
NAME7LD has one element consisting of hex '00'

followed by the name of the primary
key field.

REFORMAT is NULL.

(No dummy descriptor is used for FILEKEY on associate
datasets.)

0. DUMMY DESCRIPTOR RECORDS

PAGE 39

A dummy field descriptor indicates that the field
occurs in an asscciate or subfile data set and if it
has an inverted index data set. It has the field
values shown below.

FIELD VALUE CCMMENTS

FLDNAME 8 alphamerics field name. DBPL/I key.
tlank padded

ASSOCFIL numeric descriptor region suffix for
character associate data set. (Null if

none.)

SUBFILE alphabetic descriptor region suffix for
character su~file data set. (Null if

none.)

SUBCNTRL CFF dummy descriptor for subfile
field.

ON primary (dummy if ASSOCFIL is
posted) descriptor for sub-
file control field.

INVFILE alphabetic descriptor region suffix for
character inverted index data set.

(Null if none.)

The descriptor file, shown graphically in Figure 7 and
8, is so designed that the anchor region describes the
anchor records and also has dummy descriptors for all
other fields cn associate (1) or subfile (Z,Y) records
thus indicating the presence of all associate and
subfile data sets. It also indicates the presence of
all inverted indexes for the data base (A,B,C,D).

An associate region (1) describes a data set of
associate records and has dummy descriptors for all
other fields on sutfiles (Y) depending on the associate
record. It also indicates the presence of all inverted
indexes for the associate and dependent subfiles
(C,D) .

A subfile region (Z) describes a data set of subfile
records and indicates the presence of all inverted
indexes for the sutrecords {B).

An index region (A) describes a data set of inverted
index records.

This all enables DBPAC to access a whole data tase, an
associate porticn of a data base, a subfile, or an

PAGE 40

inverted index as if it were a degenerate case of a
data base.

P. INVEPTED INDEX DESCRIPTOS:

If INVFILE is posted for a primary direct field, then a
separate descriptor region must exist for the inverted
index dataset. It contains only the folloving:

FILE DESCRIPTOR RECORD

FILETYPE is INDEX
SPANNED is crtional
BSELNGTH is 4 + index key FLDLEN (+1 if

SPANNED).

RECIEN SECCNDAFY DIRECT FIELD DESCRIPTOR RECORE

Single Fixed Eyte

INDEX KEY SECONDARY DIRECT FIELD DESCRIPTOR RECORD

Single Fixed Byte

FLENAFE is same as indexed FLDNAME
READONLY is ON
FLDPOSIT is 4

If indexed field descriptor has INDEXEXT OFF, the
FLDLEN is maximum internal indexed field value
length (without 2 byte internal field length or 1
byte internal element length) and REFORMAT is same
as indexed field REFORMAT. If indexed field
descriptor has INDEXEXT ON, then FLDLEN is
maximum external indexed field value length and
REFORMAT is null or a blank stripper. In either
case, FLDLEN does not include the internal
"sequence number" suffix if SPANNED.

CROSS REFERENCES SECONDARY DIRECT FIELD DESCRIPTOR

Record Multiple Fixed Eyte

FLDNAM is same as indexed field's record key
FLDNAME.

READOELY is CN.
FIDPOSIT is 1.
FLDIEN is 4C00.
ELTLIM is 4C00.
ELTLEN is same as indexed field's record key

FLDLN.
REFORMAT is same as indexed field's record key

PEFCEMAT.

PAGE 41

O. FILE AND FIELD DESCRIFTOR RECORC FORMATS:

File Descriptor Record Format

1 RECLEN 0-3 Fixed Binary Lenqth of header
record, in bytes,
includina itself.

2 KEY 4-18 Fixed EBCDIC Identifier for this
descriptor. Contains
file name .

3 FLENAME 4-10 Fixed EBCDIC Seven-character file
name for this
descriptor. Contains
data base and
suffix.

4 DATAPLEX 4-9 Fixed EECDIC Dataplex name padded
with $s to 6
characters.

5 SUFFIX 10 Fixed EBCDIC Identifier dataset.

6 FLDNAME 11-18 Fixed EECDIC Contains blanks.

7 FILETYPE 19 Fixed EBCDIC 1: Anchor
2: Associate
3: Subfile
4: Inverted index

8 DESCRCT 20-21 Fixed Binary Number of field
descriptors for this
dataset.

9 BSELNGTH 22-23 Fixed Binary Lenoth of fixed
portion of record.

10 DESCOK 24.0 Fixed Bit 0: incomplete
descriptors.
1: complete
descriptors.

11 SPANNED 24.2 Fixed Bit Applicable if
FILETYPE=4:
0: ordinary records
1: spanned records
with internally
suffixed keys.

12 DATA 24.4 Fixed Bit 0: No data on file.
1: Retrieval is
possible.

PAGE 42

13 MNTNAELE 24.6 Fixed Bit 0: Maintenance
prohibited.
1: Maintenance
allowed.

14 MNTNING 25.0 Fixed Bit 0: Maintenance not in
progress.
1: Maintenance in
proqress.

15 -------- 25.2 Fixed Bit Currently not
applicable-Null.
1: Check reccrd
security.

16 LOADABLE 25.4 Fixed Bit 0: Loading
prohibited.
1: Loading allowed.

17 -------- 25.6 Fixed Bit Currently not
applicable-Null.

18 REMAINS 26-29 Fixed ------ Currently not
applicable-ull,.

19 RECSECFP 30-31 Fixed Binary Record security field
offset in records;
null if none.

20 RSECTYCD VrFldl Var 0-18 record security
specifications
consisting of a
NASIS-id padded with
$s to 8 characters and
a one byte mask.

PAGE 43

Field Descriptor Becord Format

1 RECLEN 0-3 Fixed Binary Length of entire
descriptor, in bytes,
including itself.

2 KEY 4-18 Fixed EBCDIC Identifier for this
descriptor. Contains
file and field
names.

3 FLENAME 4-10 Fixed EBCDIC Seven character file
name for these
descriptors.

4 FLDNAME 11-18 Fixed EBCDIC Name of field within
file.

5 ASSOCFIL 19 Fixed EBCDIC Suffix of associated
linear file which
contains this field;
null if none.

6 SUBFILE 20 Fixed EBCDIC Suffix of subfile
which contains this
field or which is
controlled by this
field; null if none.

7 INVFILE 21 Fixed EBCDIC Suffix of inverted
file which indexes
this field; null if
none.

8 READONLY 22.0 fixed Bit 0: (Re)Put allowed.
1: (Re)Put
prohibited.

9 SUBCNTPL 22.2 Fixed Bit Applicable if SUBFILE
is non-null:
0: Field is on
subfile.
1: This is control
field.

10 VARFLD 22.4 Fixed Bit 0: Fixed length
field.
1: Varying length
field.

11 BITFLD 22.6 Fixed Bit Applicable if VARFLD=O
0: Byte field.
1: Bit field.

PAGE 44

12 NUMALIGN 23.0 Fixed Bit 0: Strina (left)
align.
1: Numeric (right)
align.

13 VARELT 23.2 Fixed Bit Applicable if
ELTLIM>0:
0: Fixed length
elements.
1: Varying length
elements.

14 UNIQUELT 23.4 Fixed Bit Applicable if
ELTLIN>0:
0: Duplicate elements
allowed.
1: Duplicate elements
prohibited.

15 INDEXEXT 23.6 Fixed Bit Applicable if INVFILE
is non-null.
0: Index internal
values.
1: Index external
values.

16 GENERCRT 24-31 fixed EBCDIC Name of routine to be
used for testing type
of input characters
(numeric, alpha,
etc.);null if none.

17 VALIDRIN 32-39 Fixed EBCDIC Name of routine to be
used for special
validation or
conversion of input
data; null if none.
Uses argument in
VALIDARG.

18 REFORMAT 40-47 Fixed EBCDIC Name of routine to be
used for any necessary
output reformatting or
conversion; null if
none.

19 SPARE 48-55 Fixed ------ Currently not
applicable-Null.

20 NAMECNT 56-57 Fixed ------ Currently not
applicable-Null.

21 FLDPOSIT 58-59 Fixed Binary If VARFLD=O: byte

PAGE 45

offset in record.
If VARFLD=1: relative
varying field.

22 FLDLEN 60-61 Fixed Binary If BITFLD=1: bit
offset in byte.
If VARFLD=0: field
length in bytes.
If VARFLD=1: maximum
field length
in bytes including 2
byte length indicator.

23 DFLDLEN 62-63 Fixed ------ Currently not
applicable-Null.

24 ELTLIM 64-65 Fixed Pinary Applicable if
VARFLD=1:
0: not

multi-element.
>0: maximum number of
elements allowed.

25 DELTLIN 66-67 Fixed ------ Currently not
applicable-Null.

26 ELTLEN 68-69 Fixed Binary If VARELT=0: element
length in bytes.
If VARELT = 1: maximum
element length in
bytes including 1 byte
length indicator.

27 DELTLEN 70-71 Fixed ------ Currently not
applicable-Null.

28 VALIDARG VrFldl VarHex Argument to be used
with VALIDRTN
(test mask, limit,
etc.). Fifty
bytes maximum. Null
if none.

29 NAMEFLD VrFld2 Var 0-18 Superfield
components
consisting of a one
byte function code
(80x: external field
element,
00x: internal field
element) and an 8
character component
field name.

PAGE 46

30 SECURITY VrFld3 Var EBCDIC 0-18 field security
codes
consisting of a
NASIS-id
padded with *s to 8
characters.

Anchor ' ' p Associate '1'

dependent dependent

Subfile 'Z' Subfile 'Y'

inverted $ inverted inverted inverted

Index 'A' Index 'B' Index 'C' Index 'D'

(Note: A simple data plex consists of only an
anchor data set. A more complicated dataplex than
the sample may have multiple index, associate,
and/or subfile datasets, but the principles for
describing it are shown in the sample.)

FIGURE 1. SAMPLE DATAPLEX

BYTES IVINTERNATIONAL BUSINESS MACHINES CORPORATION GX20-17110U/MO25

8- double word System/30 Record Layout Worksheet Prined in U.S.A. (Rept. 4/70)
4 - word
2 - halfword
1 - 2 packed-decimal digits Page of

Record Name SAMPLE DATAPLEX 02/07/72 APPLICATION Date

I
RECLEN EMPNAME (KEY) " EMPKID (CONTROL FIE D). ' ,

HE XADEC I MAL I I
DEC I MAL

ASSOCIATE. u CONTR(L'1' RECLEN EMPNAME (KEY) EMPINSCL EMPVEH (IELD

W- W,: I I I I I ,. . , I . 1I I . I I ,I I I I -I .
HEX DEC

00 = 0 HEX
100 256 DEC Q19 I= =
200 1 512 -
300 M 768 SUBFILE
400 r 1024 'Z' RECLEN - EMPKIDPK CPARENT KEY) KIDNAME KIDPET
500 C 1280 '
600 1536 II I _ I • I I I I I I_
700 1792 1
800 E 2048 F : H ,'F I I900 r12304
ADO 2560 HEX
800 2816 EC
cOO = 3072 SUBFILE -
D00 = 328 ,'y RECLEN EMPVENPK (PARENT KEY) .
FOO = 3840 P- Il l 5 : O

LO 0..i..i I I

HEX I 2 N ' I2
DEC 01[m

INDEX (KEY)

S 'A RECLEN EMPNAME (CROSS REFERENCES)

, , , DECIMAL, , ,
DECIMAL r

INDEX
'B' RECLEN KIDNAME (KEY) EMPKIDID (CROSS REFERENCES)

I ' I I £HEX DEC HV
00 = 0 HEx l II

100 = 256 Oa

200 C- 512 INDEX
300 E 768
400 =- 1024 'C' RECLEN EMPINSCL EMPNAME (CROSS REFERENCES)
500 E 1280 (EY) I600 ED 1536 1 11 11I,, I
700 1792

900 M 2304 E a
AOo = 2560 HEX an l =Mmamasmm mmm Un I n .

COO = 3072 INDEX
D00 : 3328 D ' VEHMAKE (KEY)
oo 384 RECLEN (X NAL FO EMPVEHID (CROSS REFERENCES)

" " 1 1

FoCHARACTERISTIC CODES character, it d F - fixed-point, llword E - floating-point, full word P - packed decimal A - address value, full word V - address, extealsymbol
ld CHARACTERISTIC- to X -hexdeciml 4 ode B - binary H - fixed-point, alfword D - floating-point, double word Z - zoned decimal Y - address value, halfword S - address, base displacement

here FIGURE 2 - \SAMPLE DATAPLEX RECORD LAYOUT FOLDOUT FRA
*WiT nTlT'P ~ A.ME - .-.... .DO FR .

Anchor Associate Subfile Subfile

Regioni 'PLEX$$ ' 'PLEX$$l' 'PLEX$$Z' 'PLEX$$Y'

file descriptor file descriptor file descriptor file descriptor

Field descriptors: RECLEN RECLEN RECLEN RECLEN

EMPNAME (Key) EMPNAME (Key)
FILEKEY FILEKEY
RECSEC
EMPTYPE
EMPPAYCL
EMPKID (control)
EMPKIDID EMPKIDID (Key)

EMPKIDPK EMPKIDPK
EMPKIDRS EMPKIDRS

KIDNAME KIDNAME
KIDPET KIDPET

KIDID KIDID

RECSECI RECSEC1
EMPINSCL EMPINSCL
EMPVEH EMPVEH (control)

EMPVEHID EMPVEHID EMPVEHID (Key)

EMPVEHPK EMPVEHPK EMPVEHPK

EMPVEHRS EMPVEHRS EMPVEHRS

VEHAIRCD VEHAIRCD VEHAIRCD

VEHMAKE VEHMAKE VEHMAKE

dummy descriptors

Index Index Index Index

Region: 'PLEX$$A' 'PLEX$$B' 'PLEX$$C' 'PLEX$$D'

file descriptor file descriptor file descriptor file descriptor

Field descriptors: RECLEN RECLEN RECLEN RECLEN

Key: EMPPAYCL KIDNAME EPINSCL VEHMAKE

Cross references: EMPNAME EMPKIDID EMPNAME EMPVEHID

FIGURE 3. SAMPLE DATAPLEX DESCRIPTOR LIST

REGION DESCOK FILETYPE DESCRCT BSELNGTH SPANNED DATA MNTNABLE MNTNING LOADABLE RECSECFP

PLEX$$ ON ANCHOR 21 17 OFF OFF ON OFF ON 14

PLEX$$1 ON ASSOCIATE 11 20 OFF OFF ON OFF ON 14

PLEX$$Z ON SUBFILE 7 18 OFF OFF ON OFF ON 17

PLEX$$Y ON SUBFILE 6 21 OFF OFF ON OFF ON 17

PLEX$$A ON INDEX 3 7 ON OFF ON OFF ON null

PLEX$$B ON INDEX 3 14 OFF OFF ON OFF ON null

PLEX$$C ON INDEX 3 9 OFF OFF ON OFF ON null

PLEX$$D ON INDEX 3 14 OFF OFF ON OFF ON null

FIGURE 4. SAMPLE FILE DESCRIPTORS

51

SAMPLE PRIMARY DIRECT FIELD DESCRIPTORS

H -H

PLEX$$ EMPNAME X OFF F OFF 4 p0' OFF () () () ()

PLEX$$ RECSEC () OFF F OFF 14 1 OFF DBCYTHX X X DBFMTHX

PLEX$$ EMPPAYCL () OFF F OFF 15 2 OFF () () () () A OFF
PLEX$$1EMPNAME X OFF F OFF 4 10 * * * * * XPLEX$$1RECSEC () OFF F OFF 14 1 OFF DBCVTHX X X DBFMTHX

PLEX$$1EMPAINSCL () OFF F OFF 15 5 OFF () () () () C OFF

PLEX$$ZEMPKIDNAMEID X OFF F OFF 4 3 ON DBCVTID X X DBFMTID X

PLEX$$ZRECSECM () OFF F OFF 14 1 OFF DBCVTHX X X DBFMTHX

PLEX$$ZKEMPIDNAMESCL () OFF FOFF 15 OFF () () () () OFF

PLEX$$ZKIDPET () OFF V 2 40 OFF 50 V OFF () () () () () ()

PLEX$$ZEMPKIDID X OFF F OFF 4 3 ON DBCVTID X X DBFMTID X

PLEX$$EMPVEKIDRS () OFF F OFF 17 1 OFF DBCVTHX X X DBFMTHX

PLEX$$YVEHZKIDNAIRCD () OFF F ONV 1 10 OFF () () () () B OFF

PLEX$$YVEHMAZKIDPET () OFF F OFF2 40 OFF 5() () () () D ON

PLEX$$YEMPVEHID X OFF F OFF 4 3 ON DBCVTID X X DBFMTID X

PLEX$$YENiPVEHRS () OFF F OFF 17 1 OFF DBCVTHX X X DBFMTHX

PLEX$$YVEHAIRCD () OFF F ON 18 0 OFF ~) (C) () x

PLEX$$YVEHMAKE (OFF F OFF 19 2 OFF) D ON

SAMPLE SECONDARY DIRECT FIELD DESCRIPTORS

PLEX$$ RECLEN () ON F OFF 0 4 ON DBCVTRL X X DBFMTRL X X X

PLEX$$ EMPKID () ON V 1 4000 ON 20 3 F ON DBCVTID X X DBFMTID X ON Z

PLEX$$1RECLEN () ON F OFF 0 4 ON DBCVTRL X X DBFMTRL X X X

PLEX$$1EMPVEH () ON V 1 4000 ON 5 3 F ON DBCVTID X X DBFMTID X ON Y

PLEX$$ZRECLEN () ON F OFF 0 4 ON DBCVTRL X X DBFMTRL X X X

PLEX$$ZEMPKIDPK () ON F OFF 7 10 * * * * * X

PLEX$$YRECLEN () ON F OFF 0 4 ON DBCVTRL X X DBFMTRL X X X

PLEX$$YEMPVEHPK () ON F OFF 7 10 * * * * * X

FIGURE 5. SAMPLE DIRECT FIELD DESCRIPTORS

FLDNAME U Z

PLEX$$ FILEKEY X ON (EMPNAME) X
PLEX$$ EMPTYPE () ON (EMPPAYCL,EMPINSCL) ()

PLEX$$1FILEKEY X ON (EMPNAME) X

PLEX$$ZKIDID () ON (KIDNAME,EMPKIDPK) ()

FIGURE 6. SAMPLE INDIRECT SECONDARY FIELD DESCRIPTORS

Anchor ' Associate '1'

Subfile 'Z' Subfile 'Y'

Index 'A Index 'B' Index 'C' Index 'D'

FIGURE 7. SAMPLE DESCRIPTOR FILE

FLDNAME ASSOCFIL SUBFILE SUBCNTRL INVFILE

PLEX$$ EMPKIDID Z OFF

" EMPKIDPK Z OFF

" EMPKIDRS Z OFF

KIDNAME Z OFF B

KIDPET Z OFF

KIDID Z OFF

RECSEC1 1

EMPINSCL 1 C

EMPVEH 1 Y ON
EMPVEHID 1 Y OFF

" EMPVEHPK 1 Y OFF

EMPVEHRS 1 Y OFF

" VEHAIRCD 1 Y OFF

" VEHMAKE 1 Y OFF D

PLEX$$1 EMPVEHID Y OFF

i" EMPVEHPK Y OFF

i" EMPVEHRS Y OFF

" VEHAIRCD Y OFF

" VEHMAKE Y OFF D

FIGURE 8. SAMPLE DUMMY FIELD DESCRIPTORS

PAGE 55

TOPIC B.8 - DATA EASE EXECUTIVE

A. DATA SET NAME:

DBPL/I - DELIST Interface

B. CREATED BY:

DB Preprocessor Function

C. TYPE OF FILE:

(4) Table

D. ORGANIZAWICN:

Documentary Table

E. KEY IDENTIFIER (CCNTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The DBPL/I - DBLIST Interface (see Table 1) specifies
the DBLIST entry point name and the argument types and
order for the various DBPL/I statements. Thus, it
serves to specify for the DE Preprocessor function (see
Section IV, Topic B.5) what CALL statements are to be
generated for each DBPI/I statement. Conversely, it
specifies for DEIIST (see Section IV, Topic B.5) what
entry points will be entered and what and how
information will be available at execution time for
the performance of the various statement actions.

The various entry points and their argument types are
declared by source code in SOURCER.LISRMAC member
DBTEXT. Any program that includes the DB preprocessor
also is given DBIEXT by an INCLUDE statement in DB.

PAGE 56

TABIE 1.

DBPL/I GENERATED PL/I
----- --

FREE LIST; CALL DEPAC;
FREE LIST(pl,p2); CALL DBPACP(pl);
GET LIST(pl) KEY(O); CALL DBGLKO(pl);
GET LIST(pl) KEY INIC (st); CALL DBGLKI(plst):
GET LIST(pl) INTERNAL KEY INTO (st); CALL DBGLIK(pl,st);
GET LIST(pl) FEY(n) INTO(st); CALL DBGLKN(pl,n,st);
GET LIST(pl) KEY SET (p2); CALL DBGLKS(pl,p2) ;
SET LIST(p2) SIZE(n) LIKE tIST(pl) ; CALL DBSLLL(p2,n,pl);

where:
pl,p2 are POINTER
n is FIXED BINARY(31)
st is CHARACTER(-)VARYING

PAGE 57

TOPIC C,1 - UTIIITIES

A. DATA SET NAME:

NASIS USERIES

B. CREATED BY:

CREATIDS (procdef)

C. TYPE OF FILE:

VI SAM

D. ORGANIZATION:

Variable format

E. KEY IDENTIFIER (CCNTRCL FIELD):

8 Character NASISIC, key length 8, key position 4.

F. RECORD LENGTH:

4000 bytes

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

Maintain for each NASIS ID, the corresponding password,
timeslice, user authority and list of valid files.

PAGE 58

TOPIC C.2 - UTILITIES

A. DATA SET NAME:

JOINIDS

B. CREATED BY:

USERJOIN

C. TYPE OF FILE:

VISAM

r. OPGANIZATICN:

Variable fcrmat

E. KEY IDENTIFIER (CCNTRCL FIELD):

A JOINed TSS-ID, key length 8, key position 4.

F. RECORD LENGTH:

30 bytes.

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This is the list of JOINed TSS-IDs for the program
MERGE.

PAGE 59

TOPIC C.3 - UTILITIES

A. DATA SET NAME:

EDIT, LISRMIP

B. CREATED BY:

Not Applicable

C. TYPE OF FILE:

VISAM

D. ORGANIZATION:

Index Sequential

E. KEY IDENTIFIER (CCNTROL FIELD):

The fifteen byte key is composed of the eight byte
message key ccncatenated to the seven byte line
number.

F. RECORD LENGTH:

V(132)

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This data set contains a copy of the NASIS system
messages used by the various modules for prompting and
diagnostic messages. After editing it, the DBA will
use this file to replace the current system message
file, LISRLI{0) (LISRMLF).

PAGE 60

TOPIC D.1 - MAINTENANCE

A. DATA SET NAME:

RDBLOAD ERROR CODES Table

B. CREATED BY:

RDBLOAE

C. TYPE OF FILE:

Core table

D. ORGANIZATICN:

Sequential array

E. KEY IDENTIFIER (CCWTRCL FIELD):

Not Applicable

F. RECORD LENGTH:

Defined as (0:216) character (1)

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This table contains codes to be used to control the
action taken for each rEPAC error that may occur.

PAGE 61

TOPIC D.2 - MAINTENANCI

A. DATA SET NAME:

TRNSCT Data Set Descriptors

E. CREATED BY:

CORRECT (RECORR)

C. TYPE OF FILE:

VI (Indexed) - Anchor

D. ORGANIZAIICN:

Indexed Sequential (VISAM)

E. KEY IDENTIFIER (CCNTROL FIELD):

Offset of 4, fixed field (255)

F. RECORD LENGTH:

4000 / V

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The purpose of the transaction data base is to serve as
a temporary repocsitory for changes to one of the
database datafiles, until the datafile owner can
validate the change and execute the maintenance program
to apply it.

The TRNSCT data base will consist of fields defined as
follows:

KEY - This will be an alphanumeric Fixed field 255
bytes in length consisting of the data base
name (padded to six characters with $)
concatenated with the OWNER-ID, (padded to
eight characters with *) of the affected data
tase concatenated with the anchor's key. The
last fourteen (14) bytes of the key will be a
time stamp field.

NASISID - This will be an alphanumeric Fixed field, 8
bytes in length, and will contain the

PAGE 62

NASIS-ID of where the transaction was
created.

OPCODE - This is an alphanumeric Fixed field, 3 bytes
in length, which indicates the operation to
be performed.

FIELD - This is an alphanumeric Fixed field, 8 bytes
in length, which indicates the field of a
data base which is to be updated.

START - For field context operations, this field will
contain the starting location of the context.
It will be an alphanumeric Fixed field 4
bytes in length.

END - For field context operations, this field will
contain the ending location of the context.
It will be an alphanumeric Fixed field, 4
bytes in length.

OLDDATA - A field which will contain data. This will
be the cld data field in the instance of the
field context.

NEWDATA - A field which will contain data. This will
be the new data field in the instance of the
field context.

SUBKEY - This is an alphanumeric fixed field, 10 bytes
in length, which indicates the subfile key to
be corrected.

SUBCTL - This is an alphanumeric fixed field, 8 bytes
in length, which is the subfile control field
for subfile being corrected.

One important consideration is that conversion,
validation and reformatting routines can be written and
used to check the data as it enters the data base, thus
causing many errors to be detected before ,maintenance
is ever run.

PAGE 63

TOPIC D.3 - MAINTENANCE

A. DATA SET NAME:

CORRECT Data Display Format

P. CREATED BY:

CORRECT (RDBCOPR)

C. TYPE OF FILE:

Terminal Display

D. ORGANIZATICN:

Not Applicable

E. KEY IDENTIFIER (CCNTRC1 FIELD):

Not Applicable

F, RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The purpose of this display is to present as much of
the data contained in the field as possible to the
user.

PAGE 64

CORRECT XXXXXXXX, XXXXXXXXXXXXX

(LENGTH = 80, ELEMENMS = 4)

E001 :XXXXXXXX
E002 :XXXXXXXXXXXXXXXIIXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
002 XXXXXX

E003 :XXXXXXXX
E004 :XXXXXXXX

PAGE 65

TOPIC D. 4 - MAINTENANCE

A. DATA SET NAME:

RDBLOAD Error Data Set

B. CREATED BY:

Not Applicable

C, TYPE OF FILE:

VISAM or VSAM

D. ORGANIZATICN:

Sequential

E. KEY IDENTIFIER (CONTROL FIELD):

(Must be the same as that of the RDBLOAD input data
set).

F. RECORD LENGTH:

(Must be the same as that of the RDBLOAD input data

set).

G. BLOCKING FACTOR:

Not Applicable

1. PURPOSE:

This data set serves as the repository for all input
records that cannot be successfully loaded.

PAGE 66

TOPIC D.5 - MAINTENANCE

A. DATA SET NAME:

Database Inverted Index Format

B, CREATED BY:

A descriptor region is created by RDBEDIT (the
descriptor editor) for each inverted index. It
generally consists of a header record and three field
descriptor records.

Inverted index records are originally written by either
RINVRTSS (the sort method of inversion) or RDBINVRT (an
inversion utility program) or RDBPAC (inverting
concurrently with database loading).

C. TYPE OF FILE:

(6) Database File

D. ORGANIZATICN:

TSS VISAM - Virtual Indexed Sequential Access Method

E. KEY IDENTIFIER (CCNTRCl FIELD):

The index key field name is the same as the indexed
field name, e.g. AUTHOR, SUBJTERM, KEYWORD etc. The
VISAM key length is the maximum (internal) length of
the indexed values (plus 1 for a spanned index) and may
not exceed 255 bytes.

F. RECORD LENGTH:

Variable - 4000 bytes maximum.

G. BLOCKING FACTOR:

VISAM blocks records into pages of 4096 bytes.

H, PURPOSE:

The purpose of the inverted index files is to give the
system a fast, efficient method of storing and
accessing the list of records in a database file that
contain a carticular data element value.

The records of inverted files consist of a universal
record form with a specialized structure. The
structure consists of the concatenation of the

PAGE 67

following fields:

the VISAM record length field (RECLEN)
4 bytes, fixed length, binary

the VISAM key field
1-254 bytes, fixed length, indexed field element
value
optionally suffixed by
1 byte, fixed length, binary record number within
region if the index is SPANNED.

the cross references field
2 bytes, fixed length, binary field length
followed by one or more fixed length
anchor or subfile internal key values in ascending
collating sequence.

In a SPANNED index, the first record of a region has
key suffix zero, and possible continuation records (up
to 255) in a continuous 'region'. All records in a
region, except possibly the last, are maximum lenqth
(have the maximum number of whole cross references).

PAGE 68

TOPIC D.6 - MAINTENANCE

A. DATA SET NAME:

Descriptor Editor Data Display Format

B. CREATED BY:

Descriptor Editor DISPLAY Command (RDBEDDP)

C. TYPE OF FILEi

Terminal Display

D. ORGANIZATICN:

Not Applicable

E. KEY IDENTIFIER (CCNTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The purpose of this display is to allow the user of the
Descriptor Editor to review the specifications for a
particular field descriptor.

I. SAMPLE DISPLAY:

FIELD NAME............*.xxxxxxxx
FIELD TYPE...,,.,**....*xx
ALIGNMENT.,............. x
FIELD FORMAT............xx
FIELD LENGTH.............xxxx
ELEMENT LYNGTHo.........xxx
ELEMENT NUMBER...........xxxx
UNIQUE ELEMENTS..........x
CONVERSION ROUTINE...,. *xxxxxxxx
FORMATTING ROUTINE,.....*xxxxxxxx
VALIDATION ROUTINE......xxxxxxxx
VALIDATION AGUMENT....,..xxxxxxxxxxxxxx

7xxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXxXXXXXXXXXXXXX

PAGE 69

xxxxxxi7xxxxxxxxxxxxxxxxxxxx
INDEX FILE ID.,4.********x
INDEX KEY FORM... oooo*ooox
EXTERNAI KEY IEVGTH*oo*oox
INDEX SPA NVED*..***9*s***x
ASSOCIATE FILE ID*oooooo*x
SUBFILE COVTHOL FIELD.ooex
SUBFILE ID.****.e********x
EASY FIELD NAME.,oooeoosoxxxxxxxx
BASE FIELD OFFSET*os.****XXXX
SUPIEFIELD COMPOPENTS..*.xoxxxxxxxx

xoxxxxxxxx xoxxxxxxxx
x*xxxxxxxx xoxxxx xxxx
xoxxxxxxxx xoxxxxxxxx
xoxxxxxxxx xoxxxxxxxx
loxxxxxxxx xoxxxXxxxx
x*xxxxxxxx xoxxxxxxxx
x*xxxxxxxx xoxxxxxxxx
xexxxxxxxx

SECURITY*....oososoooooegxxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxlx
xxxxxixx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx

PAGE 70

TOPIC D.7 - MAINTENANCE

A. DATA SET NAME:

Descriptor Editor Field Name Display Format

B. CREATED BY;

Descriptor Editor (FIELDS) Command (RDBEDFD)

C. TYPE OF FIIE:

Terminal Display

D, ORGANIZATICN:

Not Applicable

E. KEY IDENTIFIER (CCNTROL FIEID):

Not Applicable

F. RECORD LENGTH:

Not Applicable

H. PURPOSE:

The purpose of this display is to allow the user of the
Descriptor Editor to review the names of all of the
fields described thus far in CREATE mode. In UPDATE
mode the user is presented a list of the descriptor
descriptor field names.

PAGE 71

I. SAMPLE DISPLAY:

XXXxXXXXXXXXXXXXXXxxxx
xxxxxxxx xxxxxxxx xxxxxxxX
xxxxxxxx xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx

NOTE: A Total of 57 names can be displayed on one
screen.

PAGE 72

TOPIC D.8 - MAINTENANCE

A. DATA SET NAME:

RDBLOAD Input Data Set

B. CREATED BY:

Not Applicable

C. TYPE OF FIIE:

VISAM or VSA?

D. ORGANIZATICN:

Sequential

E. KEY IDENTIFIER (CONTROL FIELD):

Usually sare as that of the data base to be loaded.

F, RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This data set serves as the source of input records for
RDBLOAD.

PAGE 73-

74
TOPIC D.9 - MAINTENANCE

A. DATA SET NAME:

Descriptor Editor Listinq Format

B. CREATED BY:

Descriptor Editor Frint Command (RDBEDPR)

C. TYPE OF FILE:

1403 Printer Display

D. ORGANIZATICN:

Not Applicable

E. KEY IDENTIFIER (CCNTROL FIELD):

Not Applicable

F, RECORD LENGTH:

133

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The purpose of this display is to list the contents of
each descriptor field and each file descriptor in
character form.

I. SAMPLE DISPLAY:

See Figure 1

PAGE 75

TOPIC D.10 - MAINTENANCE

A. DATA SET NAME:

INVERT Restart File

'INVERT.PAFH.'IFIIENAMnE -
where FILENAME is the six character dataplex name.

B. CREATED BY:

RDBSIVRT mcdule.

C. TYPE OF FIIE:

Seuential

D. ORGANIZATICN:

VSAM

E. KEY IDENTIFIER (CONTROL FIELD):

Not Applicable

F. RECORD LENGTH:

255 bytes (Variable)

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This file provides a restart key for the first phase of
DBSIVRT.

Preceding page blank

PAGE 76

TOPIC D.11 - MAINTENANCE

A. DATA SET NAME:

INVERT SORTIN File

,SORTIN. |JFILENAMEII'.'JIFIELD

1. FILENAME is the six character data base name.

2. FIELD is the 1-8 character field name that is
being inverted.

B. CREATED BY:

First step of BESIVRT.

C. TYPE OF FILE:

Sequential

D. ORGANIZATICN:

VSAM

E. KEY IDENTIFIER (CCETRCI FIELD):

First field is the maximum length value of the field
being inverted.

F. RECORD LENGTH:

4000 bytes (Variable). Record consists of maximum
length value of field being inverted concatenated with
file Key.

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This file is the input to the second step, which is the
TSS sort step of tESIVRT.

PAGE 77

TOPIC D.12 - MAINTENANCE

A. DATA SET NAME:

INVERT SORTOUT File

'SORTOUT.' 1FILENAMEI '.'IIFIELD

1. FILENAME is the six character data base name.

2. FIELD is the 1-8 character field name that is
being inverted.

B, CREATED BY:

Sort step of DBSIVRT.

C. TYPE OF FILE:

Sequential

D. ORGANIZATICN:

VSAM

E. KEY IDENTIFIER (CCNTRCI FIELD):

First field is the maximum length value of the field
being inverted.

F. RECORD LENGTH:

4000 bytes (Variable). Record consists of maximum
length value of field being inverted concatenated with
the file Key.

G. BLOCKING FACTOP:

Not Applicable

H. PURPOSE:

This file is the input to step three of DBSIVRT.

PAGE 78

TOPIC D.13 - MAINTENANCE

A. DATA SET NAME:

INVERT PLEX File

'PLEX.'j|FILENAMEli '.t1FIELD

1. FILENAME is the six character dataplex name.

2. FIELD is the 1-8 character field name that is
being inverted.

B. CREATED BY:

Step three of DBSIVRT.

C. TYPE OF FILE:

Indexed Sequential

D. ORGANIZATION:

VISAM

E, KEY IDENTIFIER (CCNTBCI FIELD):

Key of file is internal field value being inverted
concatenated with blanks up to the maximum external
field length. If index file is spanned, span character
is concatenated as last position of Kev.

F. RECORD LENGTH:

4000 bytes (Variable). Record is identical in format
as an index file record.

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This file is the input to the last step, translation
step, of DBSIVRT.

PAGE 79

TOPIC D, 14 - MAINTENANCE

A. DATA SET NAME:

INVERT RANGE File

'RANGE.' lFILENAME1 I'.'IFIELD

1. FILENAME is the six character data base name.

2. FIELD is the 1-8 character field name that is
being inverted.

B. CREATED BY:

Step three of tBSIVRT if not indexed external, if
indexed external, step four creates this data set.

C. TYPE OF FILE:

Indexed Sequential

D. ORGANIZATICN:

VISAM

E. KEY IDENTIFIER (CCNTROL FIELD):

Key of the file is the maximum length value of the
field being inverted. If index file is spanned, span
character is concatenated as last position of Key.

F. RECORD LENGTH:

4000 bytes (Variable). Record is identical to index
file record.

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This file is the input to the combine module for index
updates.

PAGE 80

TOPIC D.15 - MAINTENANCE

A. DATA SET NAME:

DESCRP.CHKPOINT

B. CREATED BY:

Descriptor Editor Checkpoint (RDBEDCP)

C. TYPE OF FILE:

TSS VAM

D. ORGANIZATION:

Sequential

E. KEY IDENTIFIER (CCNTROL FIELD):

Not Applicable

F. RECORD LENGTH:

The records are of varying length of which the maximum
is dynamically determined at execution time. The
maximum possible value is 4000.

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The purpose of this dataset is for storing sufficient
information from the descriptor tables so that the user
can continue creating the descriptor file at a future
time through use of the RESTORE command.

The first record consists of those items from the X
structure whose value must be preserved. The second
record consists of the entire content of the FIELD
structure, The next group of records will contain the
field descriptor information. There will be one record
for each existing field, consisting of the information
in the appropriate PLD structure concatenated with the
information contained in the appropriate SECURITY,
SUPER, and VALID structures where applicable.
Following the field descriptor records are records
containing the header descriptor information, one for
each existing file. These records consist of the
information from the appropriate HDR structure

PAGE 81

concatenated to the infcrmation from the proper RECSEC
structure when aplicable.

PAGE 82

TOPIC D.16 - MAINTENANCE

A. DATA SET NAME:

MERGE INDEX File

'INDMRG.PARM.'//FItENAME - FILENAME is the six
character data base name.

B. CREATED BY:

RDBINDM MODULE

C. TYPE OF FILE:

SEOUENTIAL

D. ORGANIZATICN:

VSAM

E. KEY IDENTIFIER (CCNTROL FTIELD):

Not Applicable

F. RECORD LENGTH:

255 Bytes (variable)

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This file provides a restart key for restart of
DBINDn.

PAGE 83

TOPIC D.17 - MAINTENANCE

A. DATA SET NAME:

Descriptor Editor FEVIEW Display Format

B. CREATED BY:

Descriptor Editor REVIEW Command (RDBEDRV)

C. TYPE OF FILE:

Terminal Display

D. ORGANIZATICN:

Not Applicable

E. KEY IDENTIFIER (CCNTRCL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The purpose of this display is to allow the user of the
Descriptor Editor to review the exact contents of any
descriptor record in any descriptor region.

PAGE 84

SAMPLE DISPLAYS:

FILY DESCHIPTOP

SUFFIX =x FILETYPE=x
DESCRCT =x-xxxx BSELNGTH=xxxxx
DESCOK =x SPANVED =x
DATA =X MNTNABLE=x

=x LCADABLE=x
PECSECFP=xxxxx REMAIRS =xxxxxxxx
RSECTYCD=xxxxxxxz:xx xxxxxxxx:xx

xxxxxxxx:xx xxxxxxxx:xx
xxxxxxxx:xx xxxxxxxx:xx
xxxxxxxx:xx xxxxxxxx:xx
xxxxxxxx:xx xxxxxxxxixx
xxxxxxxx:xx xxxxxxxx:xx
xxxxxxxx:xx zlxxxxxx:xx
xxxxxxxx:xx xxxxxxxx:xx
xlxxxxxx:xx xxxxxxxx:xx

PAGE 85

FIELD DESCPIPTOR

FLDVANE =xxxxxxxx ASSOCFIL=x
SUBFILE =x IWVFILH =x

READONLY=x INFIlE =x
VARFLD =x BITFID =x
NUMALIGN=x VAREIT =x
UNIQUELT=x INDEXEXT=x
GENEPCRT=xxxxxxxx VAIIDPTN=xxxxxxxx
PEFORMAT=xxxxxxxxx FLDPOSTT=xxxxx
FLDEN =xxxxx DFLDLEV =xxxxx

FLDLEN =xxxxx DELTLIM =xxxxx
ELTIIM =xxxxx DEITIEN =xxxxx
SPARE =xxxxxxxxxxxxxxxx
VALIDARG=xxxxxxxxixxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxyxxxxxxxxxxxxxxxxx
xxxxxxx

NAMEFLD =x.xxxxxxxx X*XXXXXXXX
xoxxxxxxxx xoxxxxxxxx
T*xXxxxxxx I*XXXXXXXX
xoxxxxxxxx XOXXXXXXXX
X*XXIXXTXI xoxxxxxxxx
X*XXXXXXXX xoxxxxxxxx
l*XXXXXXXI xelxxxxxxx
xoxxxxxxxx xoxxxxxxxx

SECURITY=xxxxxxxx xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx xxxxxxxx
xyxxxxxx xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx xxxxxxxx

PAGE 86

TOPIC D.18 - MAINTENANCE

A. DATA SET NAME:

DEFIELE which consists of the external structure FIELD

B. CREATED BY:

Not Applicable

C, TYPE OF FILE:

Table

D. ORGANIZATIOCN:

PL/I Data Structure

E. KEY IDENTIFIER (CCVTRGD FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This table is used to contain the names and core
locations of all the field descriptor during the
running of a retrieval session.

PAGE 87

I. PL/I DECLARATICN:

THIS STRUCTURE IS USED TO CONTAIN THE FIELD NAMES AND
THEIR RESPECTIVE ILD POINTERS.

1 FIELD BASED (X.FIELD PTR), /* FIELD NAMES AND */
/" POINTERS STRUCTURE. /

3 RECLEN BIN (31) FIXED, /* RECORD LENGTH FOR */
/* ASMPUT. THIS IS USED IN */
/* CHKPOINT COMMAND. IT IS
/* SET EQUAL TO ELT LENGTH OF */
/* FIELD STRUCTURE. */

3 LAST BIN FIXED, /* INDEX OF LAST TABLE ENTRY. */
3# BIN FIXED, /* NUMBER OF ENTRIES IN TABLE.*/
3 A (X.#FN REFER (FIELD.1)),

5 NAME CHAR (8), /* FIELDNAHE ARRAY. */
5 PTR PTR; /* FLD STRUCTURE POINTERS. */

PAGE 88

TOPIC D.19 - VMAINTENANCE

A. DATA SET NAME:

DERECSEC which consists of the structures HECSEC and
RECSEC STR

B. CREATED BY:

Not Applicable

C. TYPE OF FILE:

Table

D. ORGANIZATICN:

PL/I Data Structure

E. KEY IDENTIFIER (CCNTROL FIELD):

Not Applicable

F. RECORD LFNGTR:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The RECSEC structure is used to contain the record
security codes that pertain to a given file.
RECSECSTR is a character string overlay of the RECSEC
structure.

PAGE 89

I. PL/I DECLARATION:

THE RECSEC STRUCTURE IS USED TO STORE TRE RECORD
SECURITY CCDES AND SECURITY MASKS USED TO rETERMINE
RECCRD SECURITY. THE RECSEC STRUCTURE IS POINTED TO BE

HDR.RSECTYCD FIElE WHEN THE FILE HAS RECORD SECURITY
DEINED ON IT.

1 RECSEC BASED (X.RSEC_PTR), /* RECORD SECURITY */
/* CODES STRUCTURE. */

3 4 BIN FIXED, /* NUMBER OF SECURITY CODES. */
3 SECURITY (18),

5 CODES CHAR (8), /* USER PASSWORD. */
5 MASK CHAR (2), /* RECORD ACCESS CODE. */

3 CHANGED (18) BIT (1), /* ONE FLAG FOR EACH SECURITY */
/* CODE. IF ON THEN REPUT NEW */
/+ VALUE. */

3 FILLER CHAR (8); /* NEEDED FOR PLI BUG. */

THIS STRUCTURE IS A CHARACTER STRING OVERLAY OF THE
RECSEC STRUCTURE. IT IS USED FOR MAKING
COPIES OF THE PECSEC STRUCTURE.

DCL RECSECSTR CHAR (193) BASED (X.RSEC_PTR);
/* RECSEC STRUCTURE OVERLAY. */

PAGE 90

TOPIC D.20 - MAINTENANCE

A. DATA SET NAME:

DESECU which consists of the structure SECURITY and
SECURITY STR.

B. CREATED BY:

Not Applicable

C. TYPE OF FIIE:

Table

D. ORGANIZATION:

PL/I Data Structure

E. KEY IDENTIFIER (CCNTRCI FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H, PURPOSE:

The SECURITY structure is used to contain the security
codes defining field security for a given field.
SECURITYSTR is a character string overlay of the
SECURITY structure.

PAGE 91

I. PL/I DECLARATION

THE SECURITY STRUCTURE IS USED TO STORE THE FIELD
SECURITY CODES DEFINED FOR A GIVEN FIELD. IT IS

POINTED TO BY THE FPD.SECURITY FIELD ON WHICH THIS
FIELD SECURITY IS LEFINED.

1 SECURITY BASED (X.FSEC_PTR), /* FIELD SECURITY */
/* CODES STRUCTURE. */

3 # BIN FIXED, /* NUMBER OF SECURITY CODES */
/4 FOR THIS FIELD. */

3 CODE (18) CHAR (8), /* SECURITY CODE VALUES. /
3 CHANGED (18) BIT (1), /* ONE FLAG FOR EACH SECURITY */

/* CODE. IF ON THEN REPUT THE */
/* NEW VALUE. */

3 FILLER CHAR (8); /* NEEDED FOR PLI BUG. */

THIS STRUCTURE IS A CHARACTER STRING OVERLAY OF THE
SECURITY STRUCTURE. IT IS USED FOR MAKING COPIES OF
THE SECURITY STRUCTURE.

DCL SECURITY STR CHAR (157) BASED (X.FSEC_PTR);
/* SECURITY STRUCTURE OVERLAY.*/

PAGE 92

TOPIC D.21 - MAINTENANCE

A. DATA SET NAME:

DESUPER which consists of the structure SUPER and
SUPER STP.

B. CREATED BY:

Not Applicable

C. TYPE OF FIIE:

Table

D. ORGANIZATICN:

PL/I Data Structure.

E. KEY IDENTIFIER (CC TRCL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The SUPER structure is used to contain the superfield
component information of a field descriptor. SUPER_STR
is a character string overlay of the SUPER structure.

PAGE 93

I. PL/I DECIARATICN:

THE SUPER STRUCTURE IS USED TO STORE THE SUPERFIELD

COMPONENTS OF A SUPER DESCRIPTOR. IT IS POINTED TO BY

THE FLD.NAMEFLD OF THE DEFINING SUPERFIELD.

1 SUPER BASED (X.SUPEF_PTP), /* SUPER FIELD

/* COMPONENT FIELDNAMES
/* STRUCTURE. */

3 # BIN FIXED, /* NUMBER OF COMPONENT NAMES. */
3 NAME (16) ,

5 CODE CHAR (1), /* INTERNAL-EXTERNAL INDICATOR*/
5 FIELD CHAR(8), /* COMPONENT FIELD NAMES. */

3 CHANGED (16) BIT (1), /* ONE FLAG FOR EACH COMPONENT*/
/* NAME. IF ON THEN REPUT THIS*/

COMPONENT NAME. */
3 FILLER CHAR (8); /* NEEDED FOR PLI BUG, */

THIS STRUCTURE IS A CHARACTER STRING OVERLAY OF THE

SUPER STRUCTURE. IT IS USED FOR MAKING COPIES OF THE

SUPER STRUCTURE.

DCL SUPERSTR CHAR (156) BASED (X.SUPER_PTR);
/* SUPER STRUCTURE OVERLAY. */

PAGE 94

TOPIC D.22 - HAITENANCE

A. DATA SET NAME:

DEVALID which consists of the structure VALID

B. CREATEC BY:

Not Applicatle

C. TYPE OF FILE:

Table

D. ORGANIZATICN:

PL/I Data Structure

E, KEY IDENTIFIER (CCNTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This structure is used to contain the validation
argument fcr a field descriptor.

PAGE 95

I. PL/I DECLAPATION:

THE VALID STRUCTURE IS USED TO STORE A VALIDATION
ARGUMENT IF ONE IS DEFINED FOR THE FIELD. IT IS
POINTED TO BY FLC.VALIDARG IN THE FIELD TO WHICH THIS
ARGUMENT BELONGS.

1 VALID BASED (X.ARG_PTR), /* VALIDATICN ARGUMENT */
STRUCTURE. */

3 LNGTH BIN FIXED, /* LENGTH OF VALIDATION */
/* ARGUMENT. /

3 ARGUMENT CHAR (X.LVA REFER (VALID,LNGTH));
/* VALIDATION ARGUMENT. +/

PAGE 96

TOPIC D.23 - MAINTENANCE

A. DATA SET NAME:

DEFLD which consists of the based structures

FLD and FLD STRING

B. CREATED BY:

Not Applicable

C. TYPE OF FILE:

Table

D. ORGANIZAION:

PL/I Data Structure

E. KEY IDENTIFIER (CCNTROL FIELD):

Not Applicable

F. RECORD LENGTH

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The FLD structure is used to contain the information
describing a field descriptor. FLDSTRING is a
character string used to overlay the FLD structure.

PAGE 97

I. PL/I DECLARATICN:

THIS STRUCUTPE IS USED TO STORE THE INFORMATION
DEFINING A FIELD DESCRIPTOR.

1 FLD BASED (X.FID PTR), /* FIELD DESCRIPTOR */
/* STRUCTURE. */

3 BACKWARD PTR, /* BACKWARD FLD POINTER.
3 FORWARD PTR, /* FORWAR FLD POINTER. */
3 FLDNAME CHAR (8), /* FIELD NAME. */
3 ASSOCFIL CHAR (1), /* ASSOCIATE FILE IDENTIFIER. */
3 SUEFILE CHAR (1), /* SUFFIL! IDENTIFIER. */
3 INVFILE CHAR (1), /* INVERTED FILE IDENTIFIER. */
3 READONLY CHAR (1), /* FIELD READ ONLY FLAt. */
3 SUBCNTRL CHAR (1), /* FIELD A SUBFILE CONTROL FLD*/
3 VARFLD CHAR (1), /* VARYING LENGTH FIELD FLAG. */
3 BITFLD CHAR (1), /* FIELD IS FIXED LENGTH */

/* BIT STRING OF LENGTH ONE. */
3 NUMALIGN CHAR (1), /* FIELD ALIGNMENT FLAG. */
3 VARELT CHAR (1), /* FIELD ELEMENTS OF VARYING */

/* LENGTH FLAG. */
3 UNIQUELT CHAR (1), /* ELEMENTS UNIOUE FLAG. */
3 INDEKEXT CHAR (1), /* INDEX KEYS TO BE IN */

/* INTERNAL OR EXTERNAL FORM */
/* FLAG.

3 FILLER CHAR (1), /* BOUNDRY ALIGNMENT.
3 GENERCRT CHAR (8), /* CONVERSION ROUTINE NAME. */
3 VALIDRTN CHAR (8), /* VALIDATION ROUTINE NAME. */
3 REFORMAT CHAR (8), /* FORMATTING ROUTINE NAME. */
3 SPARE CHAR (16), /* UNUSED DESCRIPTOR FIELD. */
3 FLDPOSIT BIN FIXED, /* FIELD POSITION VALUE. */
3 FLDLEN BIN FIXED, /* FIELD LENGTH VALUE. */
3 DFLDLEN BIN FIXED, /* MAXIMUM FIELD LENGTH OF ALL*/

/* VALUES STORED ON THE DATA */
/* BASE. */

3 ELTLIM EIN FIXED, /* MAX NUMBER OF ELEMENTS/FLD.*/
3 DELTLIM BIN FIXED, /* MAXIMUM ELEMENTS STORED IN */

/* THIS FIELD IN THE DATA BASE*/
3 ELTLEN BIN FIXED, /* ELEMENT LENGTH VALUE. */
3 DELTLEN EIN FIXED, /* MAXIMUM ELEMENT LENGTH */

/* OF ALL OF THE ELEMENTS */
/* STORED FOR THIS FIELD IN */
/* THE DATA BASE. /

3 VALIDARG PTR, /* POINTER TO VALIDATION
/* ARGUMENT IF ANY. */

3 NAMEFLD PTR, /* POINTER TO LIST OF FIELD */
/* NAMES MAKING UP SUPER FIELD*/

3 SECURITY PTR, /* POINTER TO FIELD SECURITY */
/* CODES IF ANY. */

3 BASEELD CHAR (8), /* THE FIELDNAME ON WHICH A */
/* SUBFIELD IS TO BE DEFINED. */

3 OFFSET EIN FIXED, /* THE OFFSET WITHIN THE BASE */
/* FIELD THAT THE SUBFIEID */

PAGE 98

/2 STARTS. */
3 FILE LIST BIN FIXED, /* CN WHICH ENTRY IN FLE TAB */

/* HAS THIS FIELD BEEN HUNG. */

3 FLDTYPE BIN FIXED, /* ENTRY INTO FIELD TYPE TABLE*/
/* DEFINING WHICH TYPE OF */
/* FIELD THIS IS. */

3 CHANGED (28) BIT (1), /* ONE FLAG FOR EACH ITEM IN */
/* FLD STRUCTURE. IF ON THEN */
/* PUT NEW VALUE IN DESCRIPTOR*/
/* FILE. */

3 FILLER2 CHAR (8);/* NEEDED FOR PL/I BUG. */

THIS STRUCTURE IS A CHARACTER STRING OVERLAY ON THE FLD
STRUCTURE. IT IS USED FOR MAKING COPIES OF THE FLD
STRUCTURE.

DCL FLD STRING CHAR (122) BASED (X.FLD PTR);
/* FLD STRUCTURE OVERLAY. */

PAGE 99

TOPIC D.24 - MAINTENANCE

A. DATA SET NAME:

DEXINIT which ccnsists of the X external data structure
including all initialization values.

B. CREATED BY:

Not Applicable

C., TYPE OF PFIE:

Table

D. ORGANIZATICN:

PL/I Data Structure

E. KEY IDENTIFIER (CCNTRCI PIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The X structure is used to contain common variables and
information used to control the flow through the
descriptcr editor

PAGE 100

TOPIC D.25 - MAINTENANCE

A. DATA SET NAME:

DEX which consists of the X external data structure
minus all initialization values.

B. CREATED BY:

Not Applicable

C. TYPE OF FILE:

Table

D. ORGANIZATICN:

PL/I Data Structure

E. KEY IDENTIFIER (CCNTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The X structure is used to contain common variables and
information used to control the flow through the
descriptor editor.

PAGE 101

I. PL/I DECLARATICO:

THE X STRUCTURE IS A COLLECTION OF MINOR STRUCTURES AND
SINGLE VARIABLES USED IN THE RUNNING OF THE DESCRIPTOR
EDITOR. THESE MINCO STRUCTURES CONSIST OF PREDEFINED
FLD, HDR, RECSEC SECURITY, AND SUPER STRUCTURES, AS
WELL AS THE INPUT OUTPUT WORK AREAS FOR THE VARIOUS
STRUCTURES. THE OTHER MINOR STRUCTURES ARE A LIST OF
RESERVED FIELD NAMES AND A LIST OF FIELDS WHICH ARE TO
EE DELETED FROM THE EESCRIPTOR FILE WHEN THE CURRENT
DESCRIPTORS ARE FILED TO HAKIE THE DESCRIPTOR FILE
ACCURATE.

1 X EXT CTL, /* EXTERNAL CONTROLLED */
/* BLCCKED VARIABLES. */

THIS MINOR STRUCTURE IS THE PREDEFINED COMMENTS FIELD
DESCRIPTOR.

3 FLD COMMENTS LIKE FLD,/*COMMENTS FIELD DESCBIPTOR*/

THIS MINOR STRUCTURE IS THE PREDEFINEt FREEFORM FIELD
DESCRIPTOR.

3 FLDFREEFORM LIKE FLD, /*USER ENTERED KEYWORDS 4/

THIS MINOR STRUCTURE IS THE PREDEFINED RECORD SECURITY
FIELD DESCRIPTOR.

3 FLDRS LIFE FID,
/* RECORD SECURITY DESCRIPTOR.*/

THIS MINOR STRUCTURE IS THE PREDEFINED BASE FOR A SUBFILE
CONTROL FIELD DESCRIPTOR.

3 FLDSUBCNTRL LIKE FLD,

THIS MINOR STRUCTURE IS THE PREDEFINED BASE FOR A
SUBFILE KEY FIELD DESCRIPTCP.

3 FLD SUEIl LIKE FLD,

THIS MINOF STRUCTURE IS THE PREDEFINED BASE FOR A
SUBFILE PARENT KEN FIELD DESCRIPTOR.

3 FLDSUBP LIKE FLD,

THIS MINOR STRUCTURE IS THE PREDEFINED HEADER
DESCRIPTOR RECORD FOR THE ASSOCIATE FILE CONTAINING
COMMENTS AEN FREEFORM FIELD DESCRIPTORS.

3 HDR ASSOC LIKE RDR,/* HEADER FOR COMMENTS AND */

PAGE 102

THIS MINOR STRUCTURE IS THE PREDEFINED HEADER

DESCRIPTOR RECORD THE INDEX FILE ON WHICH THE FIELD
FREEFORM IS INDEXEE.

3 HDR INDEX LIKE HDR,
/* INDEX FILE HEADER FOR USER */
/* KEYWORDS STORED IN FREEFORM*/

THIS MINOR STRUCTURE IS A PREDEFINED INITIALI ED FLD
STRUCTURE- IT IS USED TO INITIALI E A NEWLY ALLOCATED
FLD STRUCTURE.

3 INITFLD LIKE FID,
/* FIELD DESCRIPTOR INITIAL */
/* VALUES. */

THIS MINOR STRUCTURE IS A PREDEFINED INITIALI ED HDR
STRUCTURE. IT IS USED TO INITIALI E A NEWLY ALLOCATED
HDR STRUCTURE.

3 INITHDR LIFE HDR,
/* HEADER DESCRIPTOR INITIAL */

VALUES. */

THIS MINOR STRUCTURE IS A PREDEFINED INITIALI ED
SECURITY STRUCTURE. IT IS USED TO INITIALI E A NEWLY
ALLOCATED SECURITY STRUCTURE.

3 INIT SECURITY, /* FIELD SECURITY STRUCTURE */
/* INITIAL VALUES. */

5 # EIN FIXED,
5 CODE (18) CHAR (8(
5 CHANGED (18) BIT (1),
5 FILLER CHAR (8),/* NEEDED FOR PLI EUG. */

THIS MINOR STRUCTURE IS USED FCR ALL IO OPERATIONS TO
AND FROM THE DESCRIPTOR FILE INVOLVING FIELD DESCRIPTOR
RECORDS. ALL FIELD DESCRIPTOR INPUT FROM THE
DESCRIPTOR FILE IS PLACED INTO THIS WORK AREA BEFORE
BEING MOVED TO AN ALLOCATED FLD STRUCTURE. BEFORE
OUTPUTTING TO A FIELD DESCRIPTOR ON THE DESCRIPTOR
FILE, THE FIELD INFOPMATICN IS MOVED INTO THE IOFLD
STRUCTURE. THIS IS NECESSARY BECAUSE DBPAC REQUIRES
ALL IO INTO AND FRCM TO BE DONE FROM VARYING LENGTH
CHARACTER STRINGS.

3 IO-FLD, /* FIELD DESCRIPTOR WORK AREA */
/* STRUCTURE.

5 BACKWARD PTR, /* BACKWARD FIELD POINTER. */
5 FORWARD PTR, /* FCRWARD FIELD POINTER. */
5 FLDNAME CHAR (8) VAR,/* FIELD NAME. *
5 ASSOCFIL CHAR (1) VAR,/* ASSOCIATE FILE ID. */
5 SUPFILE CHAR (1) VAR,/* SUEFILE IDENTIFIER. */

osDNiais &.oa lH1DullH LfUI3TI NIlAwIaa aNy oINj
a' aNgo aa 01 01 pyI sauinaa ovaaa isavaja AavssaDaN
slSI 511 auIa ali No aaavii samI aa0533 RdflJDUULS
aGH-oi alli oiNi aaA01d si Ioiv11oamt a111 'asoaa aaQISH
v Ifidino 01 Odfiland~i Sa 3Q11QSJDT li Nv 01 GaAQw
vamaoaa asaia a fJulis aaH 01 sii mi mvi~d St saax~aa

escaooaa aaam3 DsiAl0Axi ai uoidiaDsiI zi woaa atit
01 SNoIIYdado 01 liv H~a alSfl SI asal1~fllS aOmIW 5111

1* saa iia aus aaaaam */'(9) ayHo za3'1iii s

ai aaiVA RaN fld N3111

/* waii ov soV 05v ~~a No */'(Ly iia (sz) azpmo c,

*cami a0 Saax ./'cixia miI3 aaLQia s
1* oavIia Ni kiiua RDofit s/'aIxia N13 isi'i3 I s

1* 181S 01 SI M'IMS~f~
aimatasya Ni 135550 .'axi aiie lasaao G

/* Oam DmiNiaaa mu'iins */'(s) ma~i ar~isi s
*INV .31 MSCOO

I. uaaIlDs I 01j oi aaiiod lid A1lflnaaS s
/*cIT3Ii lddS dfl DNISiVW s3a4vm

1 aia go isil 01 aaIid *d'id 'allwI s
*INV SI iN31wL1)1I

1* OIIYQIIIA 01 dRINIOd S 'ld DHVJI7VA S

/**ILNII iNi LdflwIXV */'?P& Q) avHo NaTiS s

/*SlNSWala AO # WaWIX~V */*aVA Q~) HiVHD kiiiiaa s
*cvia / siNSwS'13

30 IHa~Waf xVw */'IVA (Z) SVHO wilia s

Is *ZBIVA 11LDNal Q'li3 W/'VA (Q) IYHD NalulaI &
/*5fl1vA NOLL1ISOd UlaISa */'HVA (Z) aUiO IIsodala s
/* oaii aoidiaasaa aauSanO w/'vA (8) amII SiadS s
/* oaIvN Nla 5KN1l:YWHOa */'HVA (8) HiVH IiWaolad S
/* SIIVN Nia tIoixvQrIvA w/'3A (9) avkID Nilai'IA S
Is eamV Nil moisuaANDD */'HVA (8) MD~ 14:Ma~aD S

Is tN3iN~lVA1UN110 */IvA (L) Hli hi51'IA s
Is ~*vla *

Is WHI IYNaalxa 10 'VNlffINI
I 1 lI 33 0 SUaX MKGI */'HVA L)HVHD ixatmQi s

/*95via 3fl~iNB si85115'I */'HVA (iHVHD iuna1n s
Is ~ ~ o~i Hioma1~.l4i

/5 sia0i SISS 3aia */'lV (Li aYRD 1IS1VA S
/**qvia iNawNu1Ii cUIi */'HVA (MO lI D NIV~fiN S

Is 0380 Him&3l i0 Emi&s
Is 11 Hi~N3a1 aaxia */Iavh (L ai aaita s

/**CviaIl H1~IKI DUIf~HVA W/'lA W. avH:D QaiadA S
Is cvGlia 'IoaINOD 5

Is 31133S V SI alall WI'VA (L0 HVHD uao.aus s
/*DVIA A'LNO aYSI QIai s/&VA (L) &iViiD AdI:)IVl. S

Is I aR1I& MSIIANI */IY, (0) HVHD) 3IMAAI S

EOL a~vd

PAGE 104

3 IOHDR, /* HEADER DESCRIPTOR WORK AREA*/
5 BACKWARD PTR, /* BACKWARD HEADER POINTER. */
5 FORWARD PTR, /* FCPWARE HEADER POINTER. /
5 SUFFIX CHAR (1) VAR,/* WHICH FILE THIS */

/4 HEADER BELONGS TO. */
5 FILETYPE CHAR (1) VAR,/* TYPE OF FILE INDICATR*/
5 DESCFCT CHAR (2) VAR,/* NUMBER OF FIELD */

/* DESCRIPTORS ON THIS FILE. */
5 BSELNGTH CHAR (2) VAR,/* TOTAL LENGTH OF FIXED*/

/* FIELDS ON THIS FILE. */
5 DESCCK CHAR (1) VAR,/* DESCRIPTORS OK FLAG. */
5 SPANNED CHAR (1) VAR,/* THIS INDEX TO CONSIST*/

/* CF SPANNED RECORDS FLAG. */
5 DATA CHAR (1) VAR,/* DATA IS ON FILE FLAG.*/
5 INTNABLE CHAR (1) VAR,/* FILE CAN BE */

/* MAINTAINED FLAG.
5 MNTNING CHAR (1) VAR,/* FILE BEING MAINTAINED*/

/* FLAG. */
5 LOADABLE CHAR (1) VAR,/* FILE CAN BE LOADED. */
5 REMAINS CHAR (4) VAR,/* UNUSED DESCRIPTOR FLD*/
5 RECSECFP CHAR (2) VAB,/* FILE HAS RECORD "/

/* SECURITY FLAG. */
5 RSEC7YCD PTR, /* POINTER TO RECORD */

/* SECURITY CODES IF ANY. */
5 CHANGED (13) BIT (1),/* ONE FLAG FOR EACH ITEM */

/* IN HEADER STRUCTURE. IF */
/* ON THEN PUT NEW VALUE
/8 IN THE DESCRIPTOR FILE. */

5 FILLER CHAR (8),/* NEEDED FOR PLI BUG. */

THIS MINOF STRUCTURE IS USED FOR ALL 1O OPERATIONS TO
AND FROM THE DESCRIPTOR FILE INVOLVING FIELD SECURITY
CODES.

3 IO SECURITY, /* FIELD SECURITY STRUCTURE. */
5 3 BIN FIXED,/* NUMBER OF SECURITY CODES*/

/* FOR THIS FIELD. */
5 CODE (18) CHAR (8) VAR,/* USER PASSWORD. */
5 CHANGED (18) BIT (1),/* ONE FLAG FOR EACH */

/* SECURITY CODE, IF ON THEN */
/* REPUT THE NEW VALUE. */

5 FILLER CHAR (8),/* NEEDED FOR PLI BUG.
3 GF, /* PARAMETERS TO GET FIELD

/* SUBROUTINE. */
5 ALLOC_NEW BIT (1),/* ALLOCATE AND INITIALI E A */

/* NEW FLD STRUCTURE, */
5 FIDTEN BIN FIXED,/* MAXIMUM ALLOWABLE IENGTH*/

FOE THE FIELDNAME. */
5 FPLDMSG CHAR (8),/* PSGID TO PROMPT FOR THE */

/* IFELDNAME. */
5 FLD# BIN FIXED,/* FOR AN EXISTING FIELD, */

/* THE ENTRY IN FIELD STRUCTUR*/
/* ELSE 0. */

PAGE 105

5 NEW_FLE BIT (1),/* ON - GET A BRAND NEW FIELD*/
/* CFF - AN EXISTING FIELD. */

5 PRMPT ERR BIT (1),/* VALUE TO SET TC.PROMPT.ERR*/
5 RESERVED BIT (1),/* A RETURNED VALUE INICATIN*/

/* IF THE FIELDNAME IS */
/* RESERVED.

5 RESFLD BIT (1),/* ON - RESERVED NAMES ARE */
/* ACCEPTABLE. */
/* OFF - RESERVED NAMES ARE */
/* NOT ACCEPTABLE. */

3 ADD FLAG BIT (1),/* IN ADD OR CHANGE COMMAND. */
3 ALPHA CHAR (26), /* ALL ACCEPTABLE ALPHABETIC */

/8 CHARACTERS. */
3 ALPHANUMERIC CHAR (36),

/* ALL ACCEPTABLE ALPHA- */
/+ NUMERIC CHARACTERS. */

3 ARG PTR PTR, /* PTR TO VALIDATION ARGUMENT.*/
3 ASSOCNAFES CHAR (9),/* AIL POSSIBLE ASSOCIATE */

/* FILE ID'S.
3 COMND CALL BIT (1),/* A COMMAND CALL OR AN */

/* INTERNAL CALL, */
3 CCOND_NAME CHAR (8),/* NAME OF COMMAND CALLED. */
3 ERR FLAG BIT (1),/* ERROR FLAG USED FOR */

/* INTER MODULE COMMUNICATION.*/
3 FIELDNAME CHAR (8),/* FIELD TO BE PROCESSED. */
3 FIELDTYPE (0:10) CHAR (2),/* ALL VALID FIELD TYPES.*/
3 FIELD_PTR PTR, /* PTR TO FIELD NAME STRUCTURE*/
3 FLDLAST (60) PIP, /* PTRS TO LAST FIELD ENTRY */

/* IN EACH FIELD STRING. */
3 FLDPTR PTR, /* PTI TO FIELD DESCRIPTROR. */
3 FLD TAB (60) PIP, /* ETRS TC FIRST FIELD ENTRY */

/* IN EACH FIELD STRING. */
3 FLDTYPE BIN FIXED,/* FIELD TYPE USED BY ADD. */
3 FSECPTR PTR, /* PTR TO FIELD SECURITY */

/* STRUCTURE. */
3 HDR PTR PTR, /* PTR TO FILE DESCRIPTOR. */
3 HEAD_TAB (36) PIR, /* CNE PTE FOR EACH HEADER. */
3 HEX_CHARS CHAR (16),

/* ALL ACCEPTABLE HEXADECIMAL */
/* CHARACTERS.

3 INDEXNAMES CHAR (16),
/* LIST OF ALL POSSIBLE INDEX */
/* FILE ID'S. */

3 IOAREA CHAR (256) VAR,/* COMMON TERMINAL INPUT */
/* OUTPUT AREA. /

3 LOAD FILE CHAR (1),/* ID OF FILE TO LOAD FROM. */
3 LOAD ONE BIT (1),/* LOAD JUST ONE RECORD. */
3 LVA BIN FIXEC,/* LENGTH OF VALIDATION */

/$ ARGUMENT. */
3 PAT_FILE CHAR (1),/* ID OF FILE BEING WORKED */

/* ON BY REVIEW - PATCH. /
3 PAT_FIEL£ CHAR (8),/* NAME OF FIELD BEING */

/* WORKED ON BY REVIEW-PATCH. */

PAGE 106

3 REV MODE BIT (1),/* IN REVIEW OR UPDATE MODE. */

3 RSEC PTR PiR, /* PTR TO RECORD SECURITY */
/* CODES. */

3 SAVE_STRING CHAR (150) VAR,/* AREA TO BUILD /
/* COMMAND STRINGS. */

3 SUBFILENAMES CHAR (10),
/* LIST OF ALL POSSIBLE */
/4 SUB-FILE ID'S. */

3 SUFFIX CHAR (36),
/* ALL POSSIBLE FILE
I/ IDENTIFIER SUFFICIES. */

3 SUPER PTR PTR, /* PTR TO SUPERFIELD COMPONENT*/
3 TRANS, /* TRANSITORY CALL LABELS. */

5 CALL CBAR (8),/* ROUTINE TO BE CALLED */
5 RET CHAR (8),/* ROUTINE TO RETURN TO. */

THIS SUBSEOUENT PART CF THE X STRUCTURE IS SEPARATED
FROM THE REST OF THE X ITEMS AS THIS PART OF X IS THE

PART THAT MUST BE SAVED WHEN USING THE CHKPOINT

COMMAND. THIS PREVIOUS INFORMATION OF X NEED NOT BE
SAVED, AS IT IS SETUP PROPERLY WHENEVER X IS ALLOCATED,
OR THOSE ITEMS WHOSE VALUES MATTERS NOT BETWEEN COMMAND
EXECUTION.

3 CHKPCINTRECLEN EIN (31) FIXED,
/* OUTPUT RECORD LENGTH FOR */
/* ASMPUT ROUTINE. IT IS SET */
/* SET TO THE LENGTH OF THE */
/* X STRUCTURE THAT MUST BE */
/* SAVED WHEN CHECKPOINT IS */
/* EXECUTED. */

THIS MINOR STRUCTURE IS THE PREDEFINED RECLEN FIELD
DESCRIPTOR. IT IS PLACED IN IN THIS PART OF X BECAUSE
IT MAY HAVE FIELD SECURITY APPLIED TO IT.

3 FLD RECLEN LIKE FLD,

THIS MONOR STRUCTURE IS A LIST OF RESERVED FIELDNAMES,
THE USER MAY NOT DEFINE BY USE OF THE ADD, SUPERFLD,
CREATSUB, ADELIRE, AND RENAME COMMANDS A FIELD
DESCRIPTOR WITH A FIELDNAME THAT APPEARS IN THIS
TABLE.

3 RESERVED, /* LIST OF RESERVED FIELENAMES*/
5 LAST_# BIN FIXED INIT (14),

/* INDEX OF LAST ENTRY. */
5 FIELDNAME (40) CHAR (8),/*BRESERVED FIELDNAMES */

3 ASSOCLIST CHAR (9),/* LIST OF ASSOCIATE FILE */
/* ID'S AVAILABLE FOR */
/8 ASSIGNMENT. */

3 CREATEF BIT (1),/* CREATE-UPDATE MODE FLAG. */
3 DATAPLEX CHAR (6),/* FILE BEING DEFINED. */

PAGE 107

3 DELETE_FILES CHAR (36),/* LIST OF DESCRIPTOR */
/* REGIONS TO BE DELETED FROM */
/4 DISC. */

3 EXIST FILES CHAR (36),/* FILE IDS OF ALL FILES */
EXISTING ON DISC. */

3 FILE EXISTS BIT (1),/* DESCRIPTOR FILE EXISTS. */
3 INDEX LIST CHAR (16),/* LIST OF UNASSIGNED INDEX*/

/* FILE ID'S. /
3 #FN BIN FIXED,/* NUMBER OF ENTRIES IN */

/* FIELD STRUCTURE. */
3 LCAD EBPOR BIT (1),

/* ERROR IN LOADING DESCRIPTRS*/
3 NEEDFILE BIT (1),

/* USER SHOULD FILE TO SAVE. */
3 SUBFILEIST CHAR (10),/* LIST OF ALL UNASSIGNED */

SUBFILE ID'S. */

THIS MINOR STRUCTURE IS USED TO STORE THAT INFORMATION
NECESSARY TO THE EXECUTION OF MODULES THAT CAN HAVE
PAGEABLE INFORMATICN DISPLAYS.

3 PAGE INFC,
5 RTN LABEL, /* WHAT ROUTINE TO PAGE. */
5 RTNNAME CHAR (8),

/* THE ROUTINE NAME THE PAGING*/
/* MODULE IS TO CALL.

5 PTR PTR, /* ADDRESS OF STRUCTURE BEING */
/* DISPLAYED. */

5 DIR CHAR (1),/* PAGING DIRECTION. */
5 FILE It CHAR (1),/* SUFFIX OF FILE BEING */

/* REVIEWED. */
5 FLD NAME CHAP (8),

/*NAME OF FIELD BEING REVIEWD */
5 !OTE| BOM FOXED./* LAST ITEM PUT ON SCREEN*/
5 ITEMS BIN FIXED,/* # OF ITEMS TO DISPLAY. */
5 LIMIT BIN FIXED,/* ALL ITEMS AFTER LIMIT TO*/

/* BE DISPLAYED ONE PER LINE, */
5 4 BIN FIXED,/* # OF PAGE BEING DISPLAYD*/
5 LAST BIN FIXED,/* LAST ENTRY USED. */
5 START (100) BIN FIXED,/* ITEM # USED TO START */

EACH PAGE. */

THIS MINOR STRUCTURE IS USED TO STORE THOSE FIELD NAMES
AND IDS OF THE DESCRIPTOR REGIONS IN WHICH THEY APPEAR
THAT MUST BE DEIETED FRCM THE DESCRIPTOR FILE THE NEXT
TIME A FILE IS DCOE.

3 DELETE, /* LIST OF FIELD NAMES TO BE */
DELETED FROM THE DISC. */

5 KEY _AME CHAR (8),/* ANCHOR KEY NAME IF /
/* ANCHOR KEY NAME HAS BEEN */
/* CHANGED. */

5 # BIN FIXED,/* NUMBER OF FIELDS */

PAGE 108

/* TO EF DELETED.
5 A (1C0),

7 FIELD CHAR (8),/* NAMES OF FIELDS TO BE */
/ DELETED. */

7 IDS CHAR (4) :/* IDS OF FILES ON WHICH */
/* THE FIELD APPEARS. */

PAGE 109

TOPIC D,26 - MAINTENANCE

A. DATA SET NAME:

DEHDR which consists of the structures HDR and
HDB RSTRING

B. CREATED BY:

Not ADplicable

C. TYPE OF FILE:

Table

D. ORGANIZATICN:

PL/I Data Structure

E. KEY IDENTIFIER (CCNTPOL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The HDR structure is used to contain the information
describing a file descriptor. HDR_STRING is a
character string used to overlay the HDR structure.

PAGE 110

I. PL/I DECLARATION:

THE HDR STRUCTURE IS USED STORE THE INFORMATION
DEFINING A FILE DESCRIPTOR.

1 HDR BASED (X.HBDPPTR), /* FILE DESCRIPTOR */
/* STRUCTURE. */

3 BACKWARD PTR, /* BACKWARD HrER POINTER. */
3 FORWARD PTR, /* FORWARD HDER POINTER.
3 SUFFIX CHAR (1), /* WHICH FILE THIS HEADER */

/8 BELONGS TO. /
3 FILETYPE CHAR (1) /* TYPE OF FILE INDICATOR. */
3 DESCRCT BIN FIXED, /* NUrBEF OF FIELD DESCRIPTORS*/

/8 ON THIS FILE. */
3 BSELNGTH BIN FIXED, /* TOTAL LENGTH OF FIXED */

/4 FIELDS ON THIS FILE. /
3 DESCOK CHAR (1), /* DESCRIPTORS OK FLAG. */
3 SPANNED CHAR (1), /* THIS INDEX TO CONSIST OF */

/* SPANNED RECORDS. */
3 DATA CHAR (1), /* DATA ON FILE SWITCH. */
3 MNTNABLE CHAR (1), /* FILE CAN BE MAINTAINED FLAG*/
3 NNTNING CHAR (1), /* FILE BEING MAINTAINEE FLAG.*/
3 LOADABLE CHAR (1), /* WHETHER OR NOT TO PLACE */

l/ DATA ON THIS FILE. /
3 REMAINS CHAP (8), /* UNUSED HDR DESCRIPTOR FIELD*/
3 RECSECFP BIN FIXED, /* FILE HAS RECORD SECURITY. */
3 RSECTYCD PTR, /* POINTER TO RECORD SECURITY */

/* CODES IF ANY. */
3 CHANGED (13) BIT (1), /* ONE FLAG FOR EACH ITEM IN */

/* HEADER STRUCTURE. IF ON */
/* THEN PUT NEW VALUE IN */
/* DESCRIPTOR FILE. */

3 FILLER CHAR (8); /* NEEDED FOR PLI BUG. /

THIS STRUCTURE IS A CHARACTER STRING OVERLAY ON THE HDR
STRUCTURE. IT IS USED FOR MAKING COPIES OF THE HDR
STRUCTURE.

DCL HDR STRING CHAP (46), BASED (X.HDB_PTR);
/* HDR STRUCTURE OVERLAY. */

PAGE 111

TOPIC E.1 - TEREINAL SUPPOBT

A. DATA SET NAME:

TSPL/I Diagnostics

B. CREATED BY:

TS Preprocessor Function

C. TYPE OF FILE:

(4) Table

D. ORGANIZATICN:

Keyed List

E. KEY IDENTIFIER (CCWTROL FIELD):

Each diagnostic comment has an identification key
having the form: *---EERO---nn' where nn is a unique
identification number.

F. RECORD LENGTH:

Variable

G, BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

TSPL/I Diagnostic comments are generated into mainline
source programs by the TS preprocessor function (see
Section IV, Topic E.1 of the DWB). They are tabulated
here with additional notes for reference. In Paragraph
I, single quotes denote that characters from the TS
preprocessor function or its argument are filled into
the message to make its meaning clearer.

I. TSPL/I DIAGNOSTIC COMMENTS:

TS001 MISSING ARGUMENT ON TSPL/I REFERENCE.

Severe error - a TS preprocessor function reference
has no parenthesized argument.

TS002 TSPL/I ARGUMENT DOES NOT BEGIN WITH A '('.

Severe error - a TS preprocessor function reference

PAGE 112

does nct begin with double left parentheses.
Processing of this TS reference was abandoned because
the closing right parenthesis would not be able to be
found.

TS003 MISSING CEtIMITEF IN TSPL/I STATEMENT.

Severe error - the right parenthesis at the end of a
TS preprocessor function reference has been
encountered unexpectedly.

TS004 STATEMENT HAS A MISSING ';'.

Severe error - the right parenthesis at the end of a
TS preprocessor function reference has been
encountered unexpectedly.

TSOC5 STATEMENT FOUND FOLICWING FINISH.

Severe error - the statement has been ignored because
it follows the IS ((FINISB;)) reference.

TSOC6 STATEMENT CONTAINS EXCESS 1(' (s).

Severe error - the statement semicolon has been
found, tut the parentheses are unbalanced. The
statement was ignored.

TS007 STATEMENT KEYWORE UNKNOWN.

Severe error - an unknown word was found as the first
word of a TSPL/I statement. The statement was
ignored.

TS008 'text' STATEMEN CONTAINS INVALID SYNTAX.

The statement type identified by 'text' was found to
contain invalid syntax. The statement was ignored.

TS009 EXTRANEOUS TEXT IGNOPED.

This message merely means that part of the statement
was iqnored.

TS010 IMPROPER OR MULTIPLE ENABEIE STATEMENTS.

An improper placement of or multiple use of an enable
statement has been encountered. The statement was
ignored.

PAGE 113

* ---NNNNN--**: TSPL/I ERRORS.'

The finish statement has been processed and VNNNN
errors were previously detected.

PAGE 114

TOPIC E,2 - TERPINAL SUPPORT

A. DATA SET NAME:

Terminal Control Elock

B. CREATED BY:

TS Preprocessor Function

C. TYPE OF FILE:

(4) Table

D. ORGANIZATION:

Linear Structure of Fields

E. KEY IDENTIFIER (CCWTRCO FIELD):

TC

The terminal contiol block is an automatic internal
data table.

F, RECORD LENGTH:

236 Bytes (Hexidecimal EC)

This is the length of the whole control block including
the dope vectors.

G. BLOCKING FACTOPt

Not Applicable

H. PURPOSE:

The TC control block is used for communication between
mainline programs and TSSUP. The declaration is
qenerated ty the TS preprocessor function. For TSPL/I
statements in the mainline, the TS preprocessor
function generates statements that post fields in TC,
such as a prompt message key. At execution time, TSSUP
refers to fields in TC and posts error code fields in
TC which may subsequently be referenced in the
mainline.

PAGE 115

I, PL/I DECLARATION:

/* TERMINAL CONTROL BLOCK (TC) FOR (TS2) TSPL/I

DECLARE
1 TC, /*DEFINE THE TC STRUCTURE */
2 FUNCTION CHAR(8), /*TS FUNCTION IDENTIFIER */

/*SET BY TS PREPROCESSOR */
/*'ENTRY *=ENTRY */
/*'READ '=READ */
/*'WRITE '=WRITE */
/**FLUSH '=FLUSH */
/*'PUT f=PUT */
/*'PROMPT-C'=COMMAND PROMPT*/
/*IPBOMPT-D'=DATA PROMPT */
/*'PROMPT-M' =ESSAGE

2 PAGING ENTRY CHAR(8), /*TS PAGING ENTRY POINT */
/*SET BY TS PREPROCESSOR */
/*TO NAME OF THE CURRENT */
/*MODULE'S PAGING ENTRY */

2 LINESIZE FIXED EIN(15),/*TS LINE WIDTH (BYTES) */
/*SET BY TSSUP ON ENTRY */

2 INPUT, /*TS SCREEN INPUT FIELDS */
3 ERROR BIT(1), /*READ ERROR BIT SWITCH */

/*SET BY TSSUP AFTER READ */
/*'O0=NO ERROR '1'=ERROR */

3 EXTRABITS BIT(7), /*RESERVED BIT SWITCHES */
2 OUTPUT, /*TS SCREEN OUTPUT FIELDS */
3 SIZE FIXED BIN(15), /*OUTPUT AREA SIZE (LINES) */

/*SET BY TSSUP ON ENTRY */
3 INDENT FIXED BIN(15), /*INDENTATION COLUMN NUMBER*/

/*SET BY USER AT ANYTIME */
3 WRITTEN FIXED BIN(15), /*PUT OUTPUT COUNT (BYTES) */

/*SET BY TSSUP ON OVERFLOW */
/*IF AUTO WRITE IS SET ON */

3 DIRECTION FIT(1), /*PUT DIRECTION BIT SWITCH */
/*SET BY TS PREPROCESSOR */
/*'0=FORWARD '1'=BACKWARD */

3 PUTPARTIAL BIT(1)., /*PUT OUTPUT MODE SWITCH */
/*SET BY USER AT ANYTIME */
/*'C'=PUT FULL RECORD ONLY */
/*'1'=PUT PARTIAL RECORD */

3 AUTOWRITE FIT(1), /*PUT END OF BUFFER SWITCH /
/*SET BY USER AT ANYTIME */
/*'0'=RETURN TO USER "/
/*'1'=AUTOMATIC WRITE */

3 WORD BREAK BIT(1), /*PUT LINE SPLIT SWITCH */
/*SET BY USER AT ANYTIME */
/*'0'=TRUNCATE AT LINE END */
/*'1'=BREAK AT LAST WORD */

3 OVERFLOW BIT(1), /*PUT OVERFLOW BIT SWITCH */

/* Iia Dn4ISUVd IftdKI dIkS*/ I(LiIG1 dims E
/* 0Q1Oa SaftTVA ZdOid=&L&*/

aa1'VA Viva ISY'I=&Oa*/
1* J09d. Boa dflSSI 19la*

Ho Aiims isnl aazi~iaavd*/ '(L)113 viva adow E
DaIals aalXJft =&L$*/

1* aLVI viva ivwuIou=&o&*/
1*IdwOdd Bioa dfissl la LIS*/

/* HDIIAs 119 aai~on aaion */ '(0)L1gGUf aa £
/ lfilvaaQ V SYVl~Via=aL&*/

/Hasa AR Qaalma !VQ=afisk/
/ dilOdd HOa d[ISSI 19 IRS*/

/* HaIiKS 11 aflTVA ulUVaaa*/ I(OLla L'nvaaU E
aaivoNaai viva=sL&*/

1*Ic1OdId Ba daSSI AR iaS*/
/* UliIs ,ioIIVDtiasai va*/ '(OiS NOlivounli £

VIVQ HOa iIdOad=&~t&*/
AIlwaOm SSaDOad=bO.*/

/* NDKI~aOdag S109Oa 9O9aa*/
/* viva v NmII& Haa A ias*/
/*ZZZFIDIIMS 8089a 9NIIudWoad*/ '(L)LIff HoHa E

1* aDIVA ITO NdBailiaLt*/
viva ONi JI idw~dd=A0&*/

* aI4iltI IV Has Ag Las*/
/* IIRtS SSVdAff fIidWOdd*/ '(0LLia ssvdASL £
1* OSSaDO~dadd S1 Ag L9S*/
/*idiWOad Viva a aaosaa*/ (8ai:D aoia~m c
/ USSRDO1d3ad Si 19 LaS*
/* aqvssaw~ igaaaaD Ao iam*/ 'L()auzD Aax-aE~vssaw £
1* AaiNa NO dOiSS1 AH IRS*/

/* (SaNII) aZIS V3B.V IdWO~d*/ '(r,0NIQ alaxii azis £
/.* smia 1LdIWOd taadDS sl*/ idawoadc Z
/* aIRVIIVAV viva adoW=&t&*/
/* sNIVwad Yiva adow ON=1Os*/
/* UINiVf1DaW DNisvd alli viA*/
1*IfdiQo 0i Viva ZdO SVHi*/
/* NH IR8 tilaS aIii 18 laS*/
/* HDIS xoiaHaAO NaagDS*/ 'tL0iIa .vva aow £

/* tKiaaDS &O d0I 0i ind=&L&*/
aNII IxaK 01 iad=606*/

/* ossaDoomad Si Aa ias*/
/* IUiIS DNItIOIiISOd lftd*/ '(0119a tioiISOd E
/g viva aaailiOD ilad=a b*/

NOIIVaOIIiNOD ONz=aO,*/
/* viva GaRKIINtoD DRlIIIfd*/
/* SI aII NaHm Haa 19 iaS*/

1 DiIIAS floIiyfiNIitIoD ild*/ * (01if No3ilNIIHOD E

iholaaaO=L*/

/* OI&~aAO Uaaans sasavo*/
Ind tialif dflSSi la iaS*/

9LL a~vd

PAGE 117

/*WISHES TO BYPASS PARSING */
/*IO'=DO NORMAL PARSING */
/*11'=SKIP NCRMAL PARSING */

3 PAGE BIT(1); /*PAGING CONTROL SWITCH
/*0''=IGNORE PAGING ENTRY */
/*11'=ALTER PAGING ENTRY */

PAGE 118

TOPIC E.3 - TERFINAL SUPPORT

A. DATA SET NAME:

TSTEXT - Terminal Control Block Declaration

B. CREATED BY:

Included by TS processor function.

C. TYPE OF FILE:

Table

D. ORGANIZATICN:

PL/I Source Statements

E. KEY IDENTIFIER (CCNTROL FIELD):

Not Applicable

F. RECORD LENGTB:

92 bytes

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The purpose of the TSTEXT is to define the terminal
control blcck (TC) vithin every program using it. This
enables the programmer and the preprocessor to refer to
the fields of the TC block in order to specify the
various functions and options needed by the prcqram.

I. PL/I DECLARATION:

DECLARE
TSFLUSH ENTRY(), /* FLUSH ENTRY POINT */
TSREAD ENTRY(,CHAR(*) VAR),/* READ ENTRY POINT */
TSWRITE ENTRY(,CEAR(*) VAR),/* WRITE ENTRY POINT */
TSPUT ENTRY(,CHAR(*) VAR, /* PUT ENTRY POINT */

CHAR(*) VAB),/* DEFINITION */
(TSPRMTC, /* COMMAND PROMPT ENTRY */
TSPRMTD, /* DATA PROMPT ENTRY
TSPRMTM) ENTRY(,CHAR() VAR, /* MESSAGE ENTRY POINT*/

CHAR(*) VAR, CBAR(*) VAR, CHAR(*) VAR, CHAR(*) VAB,
CHAR(*) VAR, CHAR(*) VAR, CHAR(*) VAR, CHAR(*) VAR,
CHAR(*) VAR, CRAR(*) VAR, CHAR(*) VAR, CHAR(*) VAR,

MO'IMaA0 ON=606
1* 01a&aaAO H iua SISfiV *
1 Jld R~au& dflSSi La alas

/* HonmIs iia mo~iaaaAa Lia/a(~~ aia~
/* O 1i SVUi IV AIVaaa=&L. *

/* QtI2 aai'i IV alvDani=.O.
* aWIJAaNv IV aaSQ La las

IDIIRS lilds RKII lad S '(0119a xvaaa aaomt E
/* aIiah 3IIVWOiOV=AL$

aasfl 01 Haflia9=6o.
1* wiLAav iv aasa kg ias *

/* H01I1S daiaflH ao ata ifid ' (L)Jjg alIghW01V E
/ cao~ad IUiavd Ifld=bL. *

1* LINO QaaUa Ia& Lfld=6O.
/ wilaRv IV daSn ka las *
1* Iik~s aaow Inaiflo lad S (L)li IviINvd lod E

/* alvamolva=Iii adagMoa=s6a *
1* dOSSaDOadHd Si la IaS

/* HDIIMS 119 IoiDaaia ind '(L)J'I Noiloadia E
/* No ias SI aIam oifl n S
/* 80oidaaho 90 dafl lG las
/* (saiia) iNL1o: inamao Lad ws'(mLhu aami KiJiLIGm E

1* awiixliv IV Hasn A8 iasS
/*aaawiNI Nwfili0D a0iiixaamQi * '(t&)Na aaxiaL Nai~iI c

1* Adl~a NO dflSSI ia ias
/* (sa~RIP) aZIS MYa ildliO * (,L)NIR aaxia azis E

/s salaii Indiflo HaadDS Si */ diflIo z

1* ~ ix SiiafS 1 aaAdaSaaS L)I SL1 V4IiXa E
1* aoaua=&L& aoma oti=so&

M* HvaaIMv dossi 19 iasS
fiHlifts lig doada avad *1'LLI oaaa c

/. ScaIai IiaKl NaaaaS si S'Ifidmi z
1* AaiNa NO dbSSI 1g IasS
1* (salxa) H.*ifa~ ii GNlsL 'i(L)NIa aim azis-amn z
1 AdINR 99IDVd SIGTIQQOD
/. aan LNaGl l ao MRV 01
/* aossGmadGa1d Si a ias
Is iNOd AU1ING ENI~vd Sl S (U~aVe: AJLNZG UI)Vd Z

/5 IdWOd VIVal=&a-IdiOad, 5

/*IdWO~id GKVWWO3=.D-IdWiOad.
/lad =dA lad& *

/ HSfIJA HSalU. *
/5 GIHR=i GaM. s

(IaH=* GadaaS
IsH XaNG AiNG. S
/5 aossaaaa Si a Ias
Is aGai&IINGI NOIIDunfI s/ (q)qGVHD IOiDMa 01z

/5 anrais oi a~i aiIaGQ :/)'I L
G8I'IDRJ

: (HVA (*)dVaD 'aVA (s)MH GV (UVID 'aVA (*)aVHZ)
')lAvn (*)aVHD 'kaVA (*)E[VHD 'HVA H)V RD 'GVA (*)&VH1D

6LL 35Vd

PAGE 120

3 CONTINUATION BII(1), /* PUT CONTINUATION SWITCH */
/* SET BY USER WHEN HE IS */
/* PUTTING CONTINUED DATA */
/* 'O'=NO CONTINUATION */
/* 1'=PUT CONTINUED DATA */

3 PCSITION BIT(1), /* PUT POSITIONING SWITCH */
/* SET EY TS PREPROCESSOR */
/* '0'=PUT TO NEXT LINE */
/* '1'=PUT TO TOP OF SCREEN */

3 MORE_DATA BIT(1), /* SCREEN OVERFLOW SWITCH */
/* SET BY THE USER WHEN HE */
/* HAS MCRE DATA TO OUTPUT *8
/* VIA THE PAGING MECHANISM */
/* 'O'=NO MORE DATA BEMAINS */
/* *1I=MORE DATA AVAILABLE */

2 PROMPT, /* TS SCREEN PROMPT FIELDS */
3 SIZE FIXED BIN(15), /* PROMPT AREA SIZE (LINES) */

/* SET BY TSSUP ON ENTRY */
3 MESSAGE KEY CHAR(8), /* KEY OF CURRENT MESSAGE */

/* SET BY TS PREPROCESSOR */
3 KEYWORD CHAR(8), /* KEYWORD FOR DATA PRCMPT */

/* SET BY TS PREPROCESSOR */
3 BYPASS BIT(1), /* PROMPTING BYPASS SWITCH */

/* SET BY USER AT ANYTIME */
/* 'O'=PROMPT IF NO DATA
/* 'I'=RETURN NULL VALUE */

3 ERROR EIT(1), /* PROMPTING ERROR SWITCH */
/* SET BY USER WHEN A DATA */
/* ERROR FORCES REPROMPTING */
/* '0'=PROCESS NORMALLY */
/* l'=REPROMPT FOR DATA */

3 TRUNCATICON BIT(1), /* DATA TRUNCATION SWITCH */
/* SET BY TSSUP FOR PROMPT *8
/* 90'=NO TRUNCATION */
/* '1'=DATA TRUNCATED */

3 DEFAULT EIT(1), /* DEFAULT VALUE BIT SWITCH */
/* SET BY TSSUP FOR PROMPT */
/* *0'=DATA ENTERED BY USER */
/* 'l'=DATA WAS A DEFAULT */

3 QUOTED BIT(1), /* QUOTED QUOTED BIT SWITCH */
/* SET BY TSSUP FOR PROMPT */
/* '0'=NORMAL DATA VALUE */
/* '1'=QUOTED STRING -/

3 MORE DATA BIT(1), /* PARENTHIZED LIST SWITCH */
/* SET BY TSSUP FOR PROMPT */
/* 'O'=LAST DATA VALUE */
/* *1'=MORE VALUES FOLLOW */

3 SKIP BIT(1), /* SKIP INPUT PARSING EIT */
/* SET BY THE USER WHEN HE */
/* WISHES TO BYPASS PARSING */
/* 'O'=DO NORMAL PARSING */
/* '1'=SKIP NCRMAL PARSING */

3 PAGE BIT(1); /* PAGING CONTROL SWITCH

PAGE 121

/* O0'=IGNORE PAGING ENTRY */
/* '1'=ALTER PAGING ENTRY */

PAGE 122

TOPIC F,1 - DATA RETRIEVAL

A. DATA SET NAME

RETDATA - Retrieval Data Table

B. CREATED BY:

RDBINIT

C. TYPE OF FILE:

Table

D. ORGANIZATICN

PL/I Data Structure

E. KEY IDENTIFIER (CCNTRCI FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE

1. RETDATA EXTERNAL CCNTROILED.
This table contains data fields unioue to the
retrieval sub-system and referenced by various
modules of that sub-system.

2. PRINTDC CHARACTER (8) VARYING.
This field contains the ddname of the print
file for retrieval.

2. PRINTDS CHARACTER (35) VARYING.
This field contains the dsname of the print
file for retrieval.

2. SRT98CE CHARACTER (8) VARYING.
This field contains the ddname of the save
file for retrieval.

2. SRT98ES CHARACTER (35) VARYING.
This field contains the dsname of the save
file for retrieval.

PAGE 123

2. BITS.
The following bit switches are used to
communicate status between the various
retrieval modules.

3. PRTUSED BIT (1).
Describes whether any data has been
written to the retrieval print file.

I. PL/I DECLARATION

/* NASIS SYSTEM RETRIEVAL DATA TABLE */

DCL
I RETDATA EXTERNAL CONTROLLEr,/*DFFINE RETRIEVAL DATA */

2 PRINTDD CHAR(8) VAR, /*PRINT FILE DDNAME "/
2 PRINTDS CHAR(35) VAP, /*PRINT FILE DSNAME */
2 SET98DD CHAR(8) VAR, /*SAVE FILE DDNABE */
2 SET98DD CHAP(8) VAR, /*SAVE FILF DDNAMF */
2 SET98DS CHAP(35) VAR, /*SAVE FILE DSNAME */
2 BITS, /*PETRIEVAL BIT SWITCHES /

3 PRTUSED BIT(1), /*PRINT FILE USED BIT */
3 UNUSED BIT(7) /*UNASSIGNED BIT SWITCHES */

PAGE 124

TOPIC F.2 - DATA RETRIEVAL

A. DATA SET NAME:

EXPAND Display Format

B. CREATED BY:

EXPAND (RDEXPND)

C. TYPE OF FIIE:

(3) Terminal Communication

D. ORGANIZATION:

Character Display Screen

E. KEY IDENTIFIER (CC TRCL FIELD):

Not Applicable

F. RECORD LENGTH:

Variable (Enter output area of the screen or pseudo
screen)

G, BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This is a series of on-line output displays produced by
the EXPANE command giving the user full access to the
inverted indexes of a data base assisting him in an
on-line search fcr information.

The displav is adapted to the size of the display
screen being used. If the end of the inverted index or
the end cf the range of E-numbers (000-999) is
encountered in either direction, a line such as

(--START OF INDEX--)
(--END OF INDEX----)

is displayed in the appropriate row. The primary term
is always regenerated on the appropriate row when
multiple paging operations are done in either direction
even if the primary term is not found in the inverted
index.

PAGE 125

SAMPLE EXPAND DISPLAY

SYSTEM: -ENTER:
USEP: expand pli,language
SYSTEM: LINE XREFS LANGUAGE(S)

*** (--START OF INDEX--)
E097 28 ASM
EC98 6 ENG
EC99 12 N/A

-E100 43 PLI
E101 4 TSS

S*** (---END OF INDEX---)

PAGE 126

TOPIC F.3 - DATA RETBIEVAL

A. DATA SET NAME:

SELECT Disclay Format

B. CREATED BY:

SELECT (RDBSICT and RDBSETS)

C. TYPE OF FILE:

(3) Terminal communication

D. ORGANIZATICN:

Character Display Screen

E. KEY IDENTIFIER (CCITPCL FIELD) :

Not Applicable

F. RECORD LENGTH:

480 Byte typical - 40 column, 22 line output area apart
from the prompting area.

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This is the output generated by the SELECT command.
RDBSLCT calls the DBPSET entry point of RDBSETS to post
the users new set and RDBSETS sends this display to the
prompt area of the screen.

PAGE 127

SELECT COMMAND SCREEN DISPLAY

aa bbbtb ccccccc

or

aa bbbbb (FROM: dddddd) ccccccc

where:

aa = set number
bbbbb = number of references
cc etc. = SELECT expression
dddddd = control field name, if applicable

PAGE 128

TOPIC F.4 - DATA RETRIEVAL

A. DATA SET NAME:

DISPLAY Display Format

B. CREATED BY:

DISPLAY (RDBDSPI)

C. IYPE OF FIIE:

(3) Terminal Communication

D. ORGANIZATICN:

Character Display Screen

E, KEY IDENTIFIER (CCETRCL FIELD):

Not Applicable

F. RECORD LENGTH:

480 Bytes typical - 40 column, 12 line output area
apart from the prompting area.

G. BLOCKING FACTOR:

Not Applicable

H, PURPOSE:

This is a series of on-line output displays produced by
the DISPLAY command civing the user full access to the
anchor and associated files of a data base assisting
him in an on-line search for information. Each screen
image is built in a PAGTAB tuffer and then transmitted
in a single output operation to the display screen. A
special use of the DISPLAY command is to retrieve saved
screen images and redisplay them. Usually a stored
screen image is one of the formats produced by the
various cormands, but it may even be a screen image the
user has keyed in.

The iisplay is adapted to the size of the display
screen being used including the degenerate case of a
typewriter terminal (120 columns by one line).

PAGE 129

The first row under the heading rows always has a field
name taq, even when it is a continuation of an element
value bequn on the previous screen.

PAGE 130

DISPLAY Command Screen Display

DISPLAY aa,b,ccccc (original command parameters)

wvwwwww: mmmmmm CF SET aa, FORMAT b, ITEM nn
xxxxxxxx: n

yyvVyyyy: p,
: q

zzzzzzzz: rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrr
rr
rrrrrrrrrrrrrrrrr etc.

where:

nn = relative record in set/key aa
mmm etc. = up to 30 characters of key value.
p, = up to 30 characters of element value.
rrr etc. = 77 character element value.
www etc. = key field name.
xxx etc. = field name having a single short element.
yy etc. = field name having two short elements.
zzz etc. = field name having a single long element.

PAGE 131

COLUMNAR

DISPLAY aa, F, ccccc (original command parameters)
PAGE xx

tl
t2

tn
hi
h2

hn

F1 F2 F5
F2

F3 F4
F4

F3 74
F3

where:

xx = page number.
tl = cne or more title lines.
hi = one or more header lines.
F1,F5 = one element field on the anchor or associate

file.
F2 = a multi-element field.
F3,F4 = an elemental field on a subfile.

PAGE 132

TOPIC F.5 - DATA RETRIEVAL

A. DATA SET NAME:

PARSED Table

B. CREATED BY:

Not Applicable

C. TYPE OF FILE:

Table

D. ORGANIZATION:

Linear Structure of elements

E. KEY IDENTIFIER (CCNTROL FIELD):

Not Applicable

F, RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

PARSED is a group of structures used by SELECT to save
the information frcm a parsed expression, when that
expression requires a search or contains "S" numbers
which cannot be resolved with set numbers until after
execution at the actual linear search.

At search time EXSEARCH calls SELECT to begin
evaluation of the toolean expressions and to post sets
to be searched, SELECT uses the information contained
in PARSED to do this and to replace all "S" numbers
with their corresponding set numbers. After the search
SELECT proceeds with the final evaluation of the
expression.

1. PARSED is a tased structure consisting of pointers
to the other structures containing the various
pieces of infcrmation that needs to be saved when
a toolean expression contains "S"numbers,

2. PARSTAB_PTR is a pointer to the structure

PAGE 133

which is used to describe each element of the
expression.

2. FTAB INFCPTR is a pointer to the structure
which holds additional information atout each
element of the expression.

2. PTAB PTES_PTR is a pointer to the array of
pointers, each pointer corresponding to an
element of the expression.

2. INST LIST PTR is a pointer to the list of
instructions generated by SELECT to provide
for evaluation of the expression.

2. WAS_PTR is a pointer to the work string in
which the expression and other necessary
character strings are stored.

2, INTH is the length for allocation of all
tables listed here except WAS. It is
determined from the length of the input
expression.

2. S# contains the S# in which the PARSED
pointer is stored, i.e. the PARSED pointer
is stored in SPCHTAE.EITRYDEF. (PARSEE. S)

S PARSTAB is the primary table for storage of
information as the expression is parsed.

2. LNTH is the number of array elements in the
table.

2. IL is an element of the table. One element
in the table is used to describe each
syntactic item in the expression.

3. IDX is the relative position of the item
in the string WAS.

3. LTH is the length of the item.

3. ID is the identifier of the item which
distinguishes between items of the same
general type.

3. TYPE is the general type of the item,
such a relation operator, character
string, etc.

3. TERM is used to mark an item as being a
term during expression evaluation, or

PAGE 134

to mark an item so that it will be
ignored by later passes.

3. SKIP causes later program passes to skip
over a particular number of items (or
elements in PARS TAB).

. PTAB PRS is an array of pointers. Each pointer
corresponds directly to an element in PARSTAB_the
Nth pointer in PTABPTRS corresponds to the Nth
element in PARS TAB. When an expression item
results in the formation of a set, the pointer to
the set is stored in the corresponding element of
PTAB PTRS.

2. INTH is number of array elements.

2. IL is a pointer array element.

1. PTAB INFO is a table for storage of additional
information about an expression item, and again
each element corresponds directly to an element in
PARS_TAB.

2. INTH is number of array elements.

2. EL is an array element.

3. IDX relative position of item, in string
WAS, which is associated with item to
which this element corresponds.

3. SFX indicates subfile which applies to
item.

3. INVXD on if item (Fieldname or value) is
indexed.

3. NNDXE on if item (Fieldname or value) is
not indexed.

3. CTL on when item (Fieldname) is control
field name.

1. INST LIST is a list of "instructions" created and
executed by SELECT. The instructions guide the
creation of sets, both from index files and
through linear search, as well as the boolean
combinaticn of all sets, once formed, to yield the
final set.

2. LNTH number of instruction elements in this
list.

PAGE 135

2. EL an instruction.

3. OP is the operation code.

2. IDX1 first parameter/

3. IDX2 second parameter.

3.IDX3 third parameter.

1. WAS is a work string containing the input
expression and other necessary character
strings.

2. INTH length of work string.

2. S actual strinq.

1. WAA is a one-character-per-element array which is
defined on top of WAS to allow easy access to a
single character.

2. LNTH is number of elements.

2. A is a one character element.

PARSErLIST is base pointer for PARSED structure.

PARSTABPTR is tase pointer for PARSTAB.

PTAE INFOPTR is tase pointer for PTAB INFO.

PTAEPPTRSPTR is tase pointer for PTAB_PTRS.

WAS PTR is base pointer for WAS and WAA.

INSTLISTPTR is Lase pointer for INSTLIST.

WAS SIZE is set to adjust size of WAS at allocation.

PAGE 136

TOPIC F.6 - DATA RETRIEVAL

A, DATA SET NAME:

SETS Display Format

B. CREATED BY:

SETS (RDBSETS)

C. TYPE OF FIIE:

Terminal Communication

D. ORGANIZATICN:

Character Screen Display

E. KEY IDENTIFIER (CCNTROL FIELD):

Not ApDlicable

F. RECORD LENGTH:

320 Bytes typical - 40 column, 8 line output area apart
from the prompting area.

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This is the output created by the SETS command. It is
a display cn the user's screen or typewriter terminal
of the sets created during the current strategy
session.

This display consists of the set number or S-number,
the number of index references in the set, and the
expression (including the control field name, if
applicable) that formed the set. The expression will
wrap around if it exceeds one line.

Paging forwards and backwards is available. The word
M'ORE:' will appear at the bottom of the list if there

is more data forward.

PAGE 137

I, SAMPLE OUTPUT:

ENTER : SETS

SET# IREFS EXPRESSION PAGE 1
aa tbbb cccccccccccccccccccccc

a CCCCCC

aa bbbb (FROn: addddd) cccccc
-MOBE:

Where:

aa = set number,
bbbb = number of references,
ccc etc. = expression,
dddddd = contrcl field name,

-MORE: = forward continuation indicator.

PAGE 138

TOPIC F.7 - DATA RETRIEVAL

A. DATA SET NAME:

EXECUTE Display Format

B. CREATED BY:

EXECUTE (RDBEXSR)

C. TYPE OF FILE:

Terminal Communication

D. ORGANIZATICN:

Character Display Screen

E. KEY IDENTIFIER (CCNTROL FIELD):

Not ADplicable

F. RECORD LENGTH:

880 Bytes - typical 40 column, 22 line output area
apart from the prcmptinq area.

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This is the output generated by the EXECUTE command
which may appear in the output area of the screen. If
set numbers are not beinq displayed in the output area,
then the output from EXECUTE will appear in the prompt
area of the screen.

When the EXECUTE output is being placed in the output
area of the screen, the screen image is transmitted in
a single output operation to the display screen.

The display is adapted to the size of the display
screen being used, including the degenerate case of a
typewriter terminal (one line).

The output screen may contain from one line to the
whole output area as output.

PAGE 139

EXECUTE Command Screen Display:

aa bbtbb cccccc ...

where:

aa = set number
bbbbb = number of references
cccccce ... = SELECT fsearch option) expression.

PAGE 140

TOPIC F.8 - DATA RETRIEVAL

A. DATA SET NAME:

PRINT Data Set Format

B., CREATED EY:

PRINT (RDBPBNT)

C. TYPE OF FILE:

(5) Non-data base file and

(2) Formatted print-out

D. ORGANIZATICN:

VSAM

E. KEY IDENTIFIER (CC NRCL FIELD):

Not Applicable

F. PRINT LENGTH:

132 Bytes maximum printed plus record length and
carriage ccntrcl fields (5 bytes).

G. BLOCKING FACTOR:

Block size = 4096 tytes.

H. PURPOSE:

This is an output data set produced by the PRINT
command. It consists of line images written using a
PL/I file named PRINTER. At the end of a terminal
session a ISS PPIWT task is initiated to print the data
set off-line on a line printer.

A leader page shows the user's name and mail stop for
distribution. Following the output produced for each
PRINT command is a separator page having 36 dollar
siqns on the first line.

PAGE 141

PRINT Command - LEADER PAGE

DISTRIBUTE TO: xxxxxxxxx etc.

MAIL STOP: yyyyyyv etc.

where:

xxx etc. = user's name
yyy etc. = mail stop

PAGE 142

PRINT Command - TYPICAL FOBMAT 1 PAGE

PRINT OF SET xx, Format 1,

aaaaaaaa: ddddddd
aaaaaaaa: eeeeeee
aaaaaaaa: fffffff

where:

aaaaaaaa = key field name
d thru f = key value (wraps around to column 1 if more than

122 characters).

PAGE 143

PRINT Command - TYPICAL FORMAT 2, 3 or 4 PAGE

PRINT OF SET xx, FORMAT y, zzzzzzz:vvvvvvvvvvv PAGE wwwww

aaaaaaaa: d
tbbhbbbb: e

: f
cccccccc: qggg qqgg
gggggggggqggggg999999999999999
gggq

where:

aaaaaaaa = field name having a single short element.
bbbbbbbb = field name having two short elements.
cccccccc = field name having a long element.
d, f = element value up to 122 characters (no maximum

number of elements).
qgg etc. = 379 character element value (no maximum).
zzz etc. = key field name.
vvv etc. = first 74 characters of key value.

PAGE 144

PRINT Command - TYPICAL SET 98 (saved screen image) PAGE

DISPLAY OF SCREEN nnnnnnn
XXxXXx XXXXX XXXxxXXx xxxxxxxxxxxxx
X X
X X
x X
X X
X X
X X
X X

x K
X X

X X

X X

X X
X x
x X

X X
x x
X X
X x

XXXXXXXXXXXXXXXXXX2XIXXxXXXXXXXXXXX

where:

nnnnnn = relative saved screen number,

PAGE 145

TOPIC F.9 - EATA PETRIEVAL

A. DATA SET NAME:

EXPTAB - Expand Term Table

B. CREATED BY:

BDBXPNE

C. TYPE OF FILE:

(4) Table

D. ORGANIZATICN:

PL/I Data Structure

E. KEY IDENTIFIER (CCNTRCI FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

1. EXPTAE EXTERNAL CONTROLLED,
This table contains a list of alphabetically
sequential terms taken from an inverted index file
and informaticn relating the terms to reference
numbers (E-numbers) used in the SELECT command.

2. TERMS AFEA (2500).
This area contains a linked list of terms
read frcm the inverted index.

2. FIRST-FRI POINTER.
Points to the first term in the linked
list.

2. LAST-PRT POINTER.
Points to the last term in the linked list.

2. TOP-PTR POINTER
Points to. the first term displayed on the
current page of data.

PAGE 1 46

2. EOTTOM-PTR POINTER
coints to the last term displayed on the

current rage of data.

2. FIRST - E# BINARY FIXED.
Contains the reference number for the first
terms in the list.

2. LAST E# BINARY FIXED.
Contains the reference number for the last
term in the list.

2. TOP-E# BINARY FIXED.
Contains the reference number for the first
term on the current page.

2. BOTTOM-E# BINARY FIXED,
Contains the reference number for the last
term on the current page.

2. 10-E# BINARY FIXED.
Contains the lowest valid reference number.
(Either 1 or the reference number of the
index origin.)

2. HI-E# BINARY FIXED.
Contains the highest valid reference number.
(Either 999 or the reference number of the
index end.)

I. PL/I DECLARATION

DCL 1 EXPTAB EXT CONTWCILEt,/*DEFINE THE TERM TAELE */
2 TERMS AfIA(2500), /*TERM STORAGE AREA
2 FIRST PTR POINTER, /*FIRST LIST ENTRY POINTER*/
2 LAST PTR POINTER, /*LAST LIST ENTRY POINTER */
2 TOP PTR POINTER, /*FIRST LINE ON PAGE PTR */
2 BOTTOMFTR POINTER, /*LAST LINE ON PAGE PTR */
2 FIRST # EBIN FIXED, /*FIRST ENTRY'S E# */
2 LASTE# BIN FIXED, /*LAST ENTRY'S E# */
2 TOP _E EIN FIXED, /*FIRST E# ON PAGE "/
2 BOTTOME# BIN FIXED,/*IAST E# ON PAGE */
2 LO_E# BIN FIXEt, /*LOWEST VALID E# */
2 HTIE BIN FIXED; /*HIGHEST VALID E# */

PAGE 147

TOPIC .,10 - DATA RETRIEVAL

A. DATA SET NAME:

FLDTAB - Field Name Table

B. CREATHD BY:

DBPFLDT entry of module PDBPAC

C. TYPE OF FILE:

(4) Table

D. ORGANIZATICN:

Linear structure ccntaining adjustable arrays.

E, KEY IDENTIFIER (CCNTROI FTEID):

FLDTAB is the major structure name. It is the name of
an external variable containing the data.

F. RECORD LENGTH:

918 bytes(396 hexadecimal) minimum plus 10 (A hex)

bytes per field name.

The minimum length includes the necessary PL/I dope
vector (18E bytes = BC hexadecimal) and space for the
RECLEN and keyname field names.

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The field name table, FLDTAB, contains a list of the
names of the fields in the current data base organized
particularly for use by the DISPLAY and PRINT commands
and index indicators, particularly for the EXPAND and
SELECT commands, of field names for which there are
inverted indexes. The sizes, base addresses and names
of sequential format definition tables are tabulated.
The base addresses and names of columnar format
definition tables are tabulated.

AAAAAAAAAAAA****** * *****~** *******

DATAPLEX XXXXXX
********** ******** ***** *** ******

AAAAAAAA****A*AA*** A* *A ***

*F ASIRS VB NVUIG R V F F E E NAMEFLD S V *

* L SUNEUAI UANN E E A L L L L E A *
* D SBVABRTMRID N F L D D T T C F C L *

* N OFFDCFFAEQE E 0 I P L L L 0 I U I *
* A CIIONLLLLUX R R D 0 E E I D E R D

* M FLLNTDDITEE C M R S N N M E L I A

* E IEELR G LX R A T I D T R *

* L YL N TT T T N T Y G

SX X X X X X X X X X XXXXXXXX XXXXXXXX XXXXXXXX XXXX XXXX XXX XXXX X. XXXXXXXX XXXXXXXX XXXXXXXXXXXXXXXXXX
X.XXXXXXXX XXXXXXXX XXXXXXXXXXXXXXXXXX
X.XXXXXXXX XXXXXXXX XXXXXYXXXXXXXXXXX

** ****** *********************** ***********

*S F D B D S D M M L R RSECTYCD *
*UIE S EPANNOE *
*F L S E S AT T T A C C M *

I E C L CNAN ND S 0 A

XT R N ON AIA E D S

* Y C G KE BNB C E K*
* P T T D LGL F *
* E H E E P *
~************************ **** ************

X X XXXX XXXX X X X X X X XXXX XXXXXXXX:XX
XXXXXX:XX .

FIGURE 1. SAMPLE LISTING FORMAT

PAGE 148

I. SCHEMATIC CIAGRAM:

See Figure 1

J. PL/I DECIAPATICN:

/* FLDTAB: NASIS SYSTEM FIELD NAME TABLE FOR
DATABASE-2.

THIS TABLE IS ALLCCATED (CR FREED AND REALLOCATED) AND
INITIALIZEE BY A CALL TO THE ENTRY POINT DBPFLDT OF
MODULE PBFDAC. EACH CALL TO THIS ENTRY POINT CAUSES
THE ENTIRE TABLE IC BE RE-INITIALIZED TO THE VALUES FOR
THE CURRENTLY SPECIFIED DATABASE FILE. THE VALUES WILL
BE ADJUSTED TO REFLECT THE DATA AVAILABILITY BASED UPON
THE SECURITY CODE ENTERED BY THE USER. */

DECLARE
1 FLDTAB EXT CONTROLLED, /*NASIS FIELD NAME TABLE */

3 DATAPLEX CHARACTER(8), /*THE DATABASE FILE NAME */

3 FIELD, /*THE DATABASE FLD NAMES */
5 # FIXED BINARY, /*THE NUMBER OF FIELD S/

/*NAMES IN THE TABLE 5/

5 RECLEN CHARACTER(8), /*THE RECORD LENGTH FIELD*/
/*ENTRY (FIELD.NAME(0)) */

5 KEYNAME CHARACTER(8), /*THE KEY FIELD ENTRY */
/* (FIELD. NAME (1)) 5/

5 NAME(*) CHARACTER(8), /*THE REMAINING FIELD */
/*NAMES FOR THIS FILE */
/* (FIELD.NAME(2:FIELD.)) /

5 INDEXID(*) CHARACTER(1), /*THE INDEX FILE SUFFIX */
/*FOR EACH INDEXED FIELD 5/

/*(FIELD.INDEX(O:FIELD.) */
5 SUBPILE(*) CHARACTER(1), /*THE SUBFILE SUFFIX FOR */

/*EACH CONTROL FIELD OR */
/*SUEFILE FIELD 5/

/* (FLD.SUBFILE (0:FLD.)) /

3 SEQ_FORMAT(25), /*SEQUENTIAL FORMAT INDEX*/
5 # FIXED BINARY, /*THE NUMBER OF FIELD */

/*NAMES IN THE FORMAT 5/

5 BASE POINTER, /*THE FORMAT DESCRIPTION */
/*TABLE ADDRESS */

5 NAME CHARACTER(8), /*THE NAME ASSIGNED TO 5/

/*THIS FORMAT (OPTIONAL) */

3 COL_FORMAT(25), /*COLUMNAR FORMAT INDEX 5/
5 BASE POINTER, /*THE FORMAT DESCRIPTION 5/

/*TABLE ADDRESS 5/

5 NAME CHARACTER(8); /*THE NAME ASSIGNED TO 5/
/*THIS FORMAT (OPTIONAL) 5/

PAGE 149

X. FIELD EEAILS:

DATA BASE - has the name of the current dataplex.

FIELD. - the subscript in FIELD.NAME of the last field
name. Thus it is the number of field names
excepting BECLEN.

FIELD.PECLYN - the name of the anchor record length
field. This may be referenced as FIELE.NAME(O)
when convenient.

FIELD.KEYNAME - the name of the current data base's
anchor key field. This may be referenced as
FIELD.NAME(1) when convenient.

FIELD.NAME - an array containing the names of the
fields in the current data base arranged as shown
in Paragraph I.

FIEID.INDEXID - An array parallel with FIELD.NAME. A
non-blank indicates an indexed field.

FIELD.SUEFILE - An array parallel with FIELD.NAME. In
the anchor and associated portion of the array
(subscripts C through FLDTAB.SEQ.FORMAT (3)) a
non-blank indicates a subfile control field. In
the subfile rcrtion of the array(subscripts above
FLDTAE.SEQ-FOFMAT(3)) the character indicates
which subfile a field is on.

SEQ_FORMAT - an array serving as a directory of the
sequential fcrmat definition tables. The first
focur entries are posted by RDBPAC to overlay
FIFLD.NAME beginning with FIELD.KEYNAME as shown
in Paragraph I. The remaining entries are posted
by REBFORM to refer to dynamically allocated
sequential fcrmat definition tables.

SEQ_FORMAT. - the number of field names in a sequential
format definition table.

SEQ_ FORMAT.BASE - the address of a sequential format
definition table or a NULL pointer value if it is
undefined.

SEQ_FORMAT.NAME - the name assigned to a sequential
format or blanks.

COLFORMAT - an array serving as a directory of the
columnar format definition tables. The entries
are posted by RDPFCBM to refer to dynamically

PAGE 150

allocated columnar format definition tables.

COL FORMAT.BASE - the address of a columnar format
definition table or a NULL pointer value if it is
undefined.

COLFORMAT.NAME - the name assigned to a columnar
format or blanks.

/117

wL

z-

SE&-FORMAT FIELD NAME
* .BASE

0 RECLEN

1 1
I EMPNO KEY FIELD

Predefined 2 5 2 AREACODE
3 EMPAGE A ANCHOR FIELDS

3 8 4 KIDCTL Z

5 PHONENUM
4 16

6 ADDRESS
5 7 CARCTL Y ASSOCIATED

8 HIREDATE B FIELDS

User 9 KIDID Z
defined _ 10 CNAME C Z

11 KIDPK Z
25 . 12 PETS D Z

- - - - - - - - - - - SUBFILE
13 CARID y FIELDS
14 CARPK Y
15 MAKE E Y
16 WEIGHT F Y

Alphabetic Sequences

Subfile Control Fields

Subfile id Key Fields

Figure 1. Schematic Diagram of FLDTAB

PAGE 152

TOPIC F.11 - DATA RETRIEVAL

A. DATA SET NAMI:

FORMATS Display Format

B. CREATED EY:

Formats - FEBSTRT

C. TYPE OF FILE:

Terminal Display (Faqeable)

D. ORGANIZATICN:

Not Applicable

E. KEY IDENTIFIER (CCNTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This terminal display is created to display the names
of the formats currently available to him. A title,
identifying the display, is generated, followed by the
format nares. The eight character names are sorted
into alphatetic sequence, tagqed with an asterisk if
the format is in ccre, separated by a blank and grouped
into a SCRNWTH size line before they are written to the
display.

PAGE 153

TOPIC F.12 - DATA RETRIEVAL

A. DATA SET NAME:

SETAB Sets Table

B. CREATED BY:

Not Applicable

C. TYPE OF FILE:

Table

D. OPGANIZATICN:

PL/I Data Structure

E. KEY IDENTIFIER (CCNTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

1. SETAE EXTERNAL CONTROLLED.
This structure contains the sets, i.e., current
strateqy, that the user is creating and associated
information.

2. CURRENT_# PINARY FIXED (15,0).
This is the value of the last set number that vas
created.

2. SET (0:99).
There is one set created for each select, search
and LIMIT COMMANt.

3. POINTER (97) POINTER.
There is a pointer to a list of keys for
every set that is created. POINTER (3)
points to the list for SRT (J).

3. SIZE BINFY FIXED (31,0).
This is the number of keys associated uith

PAGE 154

the corresponding set number.

3. TYPE CHAFACTER (1).
This is the SUBFILE SUFFIX that describes the
origin of the keys in the set.

I. PL/I DECLARATION:

/4 NASIS SYSTEM SET TABLE */

DCL 1 SETAB EXTENt CCIBVOLtED,/*DEFINE THE SET TABLE */
2 CURRENT _ BIN FIYEt(15,C), /*LAST ASSIGNED SET NUMBER */
2 SET(0:99), /*DEFINE THE SET ENTRIES */
3 POINTER PTR, /*THE SET LIST POINTER */
3 SIZE BIN FIXED(15,O), /*THE SET SIZE (# OF KEYS) */
3 TYPE CHAR(1); /*THE SET TYPE (SUBFILE ID)*/

PAGE 155

TOPIC F.13 - DATA RETRIEVAL

A. DATA SET NAME:

USERTAE User Data Table

B. CREATED EY:

RDBMTT

C. TYPE OF FIIE:

Table

D. ORGANIZATICN:

PL/I Data Structure

E. KEY IDENTIFIER (CCNTROL FIELD):

Not Applicable

F. RECORD LINGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

8, PURPOSE:

1. USERTAB EXTERNAL CONTROLLED.
This structure contains user oriented and status
information useful to all NASIS sub-systems.

2. NASIS ID CHARACTER(8) VARYING.
This field contains the id specified by the
user when initiating his NASIS session.

2. SECURITY CHARACTER (8) VARYING.
This field contains the user's most recently
specified security code, i.e. his PASSWORD at
logon or in respond to a SECURE Command.

2. CWNERID CHARACTER (8) VARYING.
This field contains the TSS userid of the
cwner of the file specified by the user.

2. STRATEGY CHARACTER (16) VARYING.
This field contains the name of the strategy
in the event of a RERUN.

PAGE 156

2. TASK_ID EINARY FIXED (31,0).
This field contains the task identification
number assigned to the user at logon time.

2. SEQUENCE BINARY FIXED (15,)).
This field contains a sequence number used by
the system in defining unique ddnames to
dynamically specified files.

2. EITS.
The status of the user's session is reflected
by the settings of the following bit
switches.

3. MTTFLAG BIT(1).
Describes whether the task is runninq
under MTT-or not.

3. DISABLED BTT(1).
Defines the status of attention
interupts.

3. RETEIEVR BIT(1).
Describes whether the task is runninq
under the retrieval system or not.

3. RESTART BIT(1).
Describes whether the session is a
restart.

3. RERUN EIT(1).
Describes whether the session is a
rerun.

3. TESTMODE BIT(1).
Describes whether the session is
productive or a debugginq run.

3. CONVFLAG BIT(1).
Describes whether the task is
conversational or not.

I. PL/I DECLARATION:

/* NASIS SYSTEM USER DATA TABLE */

DCL
1 USERTAB EXT CCNTRCLLIt, /*NASIS USER DATA TABLE */

2 NASIS_ID CHAR(8) VAR, /*USER'S IDENTIFICATICN */
2 SECURITY CHAR(8) VAR, /*USER'S SECURITY CODE
2 OWNER_ID CHAR(8) VAR, /*FILE OWNER'S IDENTIFIER */
2 STRATEGY CHAR(16) VAR, /*STRATEGY NArE FOR RERUN */
2 TASK _IE IN FIXEC(31,0), /*TASK IDENTIFICATION 4 */

PAGE 157

2 SEQUENCE BIN FIXED(15,C), /*DDNAME SEQUENCE NUMBER
2 BITS, /*SYSTEM STATUS FLAGS

3 MTTPLAG EIT(I), /*I'I=IN MTT MODE */
3 DISABLED PIT(1), /*'1'=ATTN'S DISABLED
3 RETRIEVE EIT(1), /*'1'=RUNNING RETRIEVAL */
3 RESTART EIT(1), /*'1'=IN RESTART MODE */
3 RERUN EIT(1), /*'l'=IN RERUN MODE */
3 TESTMODE EfT(1), /**1'=NO STRATEGY SAVING +/
3 CONVFLAG BIT=1), /*'1'=CCNVERSATIONAL
3 EXTRABIT EIT(l); /*1W=(NO ASSIGNED VALUE) */

PAGE 167

3. X is actual value.

PAGE 158

TOPIC F.14 - EATA RETRIEVAL

A. DATA SET NAME:

EXPLAIN Display Format

B. CREATED EY:

EXPLAIN (message, RESPONSE and term options) - RDBEXPL

C. TYPE OF FILE:

Terminal Display (fageable)

D. ORGANI7ATICN:

Not Applicable

E. KEY IDENTIFIER (CCNTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This terminal display is created to display to the user
the results cf his message response or term
explanation. The date will be written to the screen as
read from the message file with no indentation or data
tagging, but with word-break specified.

PAGE 159

TOPIC F.15 - DATA RETRIEVAI

A. DATA SET NAME:

GPIELDS tisplay Format

B, CREATED BY:

GFIELDS - FDBGFLDS

C. TYPE OF F LE:

Terminal Display

D, ORGANIZATICN:

Not Applicable

E. KEY IDENTIFIER (CCNTROL FIELD):

Not Applicable

F. PECORD LINGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This terminal display is created to display the names
assigned to the various generic levels of the key of
the generic file. A title, identifying the display, is
generated, followed by the names. The eight character
names,separated by two blanks, are grouped into SCRNWTH
size lines before they are written to the display.

PAGE 160

TOPIC F.16 - DATA RETRIEVAL

A. DATA SET NAME:

SEQ _FORM - Sequential Format Definition Table

B. CREATED BY:

DBPFLDT entry of RDEPAC (formats 1-4) overlay
FLDTAB.FIELD.NAME

RDBFORM (formats 5-25) - by the FORMAT command,

C. TYPE OF FILE:

(4) Table

D. ORGANIZATICN:

Adjustable linear array cf 8-character field names.

E. KEY IDENTIFIER (CCNTROL FIELD):

SEQ_FORM is the major structure name.

F. RECORD LENGTH:

8 bytes times the number of field names in FLDTAB.

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

A sequential format definition table, SEOFORM,
contains a list cf the names of the fields in a
sequential format for use by the REVIEW and RECORD
commands. The key field name is always the first in
the list. The number of names in the list and the base
address of the list is posted in FLDTAB.SEQ_FORMAT.

PAGE 161

I. PL/I DECLARATICN:

DECLARE
1 SEQ _FORM BASED(SEQ BASE),/* SEQUENTIAL FORMAT SPECS */

3 FIELD_1_, /* OVERLAID BY FIELD(1) */
5 #FIELDS FIXEr EIN, /* NOT USED
5 PAD CHAP(6), /* FILLER TO CRAR(8) */

3 FIELD(2:I
REFER(SEC FORM.#EIELES)),/* NOT USED */
5 NAME CHAR(8); /* NAME LIST */

PAGE 162

TOPIC F,.17 - DATA RETRIEVA

A. DATA SET NAME:

NASISID.STRATEGY.EATASET

B. CREATED BY:

RTSSTRI

C. TYPE OF FILE:

(5) Non-Data Base

D. ORGANIZATICN:

VISAM

E. KEY IDENTIFIER (CCETROI FIELD):

Strategy name supplied by the user (region name) plus a
seven digit integer generated key.

F. RECORD LENGTH:

256 Bytes

1. Key length - 23

a. Region name - 16

t. Integer key - 7

2. rata length - 231

3. Pecord length field - 4

4. Keyboard/Cardboard Indicator - I

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This data set is used to contain the command strings
that the user has entered through the NASIS system.
The current strategy is kept in a CURRENT_STRATEGY as
each command is entered. After a strategy session, the
user may save the current strategy under his specified
name; otherwise, it will be deleted. Tese saved
strategies can then, at some later time, be rerun by

PAGE 163

use of the RERUN command. The saving of the current
strategy ccmmand strings also provides for a restart
capability if TSS crashes while the user is running the
NASIS system.

PAGE 164

TOPIC F.18 - DATA RETRIEVAL

A. DATA SET NAME:

SRCHTAB - linear Search Table of Pseudo-sets

B. CREATED BY:

SETECT (search option) - RDBSLCT

C. TYPE OF FILE:

Table

D. ORGANIZATICN:

Linear structure containing arrays.

E. KEY IDENTIFIER (CCNTPOL FIELD):

SRCHTAB is the major structure name; it is the name of
the control section containing the data.

F. RECORD LENGTH:

(hexadecimal) data bytes.

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The linear search table of pseudo-sets, SRCRTAB,
contains the displavable information for every
pseudo-set, whether a PRINT is to be performed on each,
the set upon which the pseudo-set is based (as a result
of the search), pointers to search lists and parsing
lists (fcr those pseudo-sets defined as boolean
combinations of other pseudo-sets and/or sets), and the

testing criteria for each.

I. SCHEMATIC DIAGRAM:

See Figure 1

J. VARIABLE DETAILS:

3 CURRENTS# is the last pseudo-set number
assigned.

PAGE 165

3 MAX S is the raximum allowable pseudo-set number.

3 ENTRY is an array of displayable pseudo-set
infcrmation containing the S# and its related
EXPRESSION.

3 ENTRYDEF is an array with detailed pseudo-set
infcrration:

5 RECORD is a pointer used for the parameters of
those pseudo-sets to be RECORDed after a
search execution. This points to SPRNTAB
structure.

5 CPEATED BY is two bits identifying the type of
SELECT command used to create this
pseudo-set where,

7 SELECTIF bit is on if the search option
was used, or

7 SELECT BOOL bit is on if the boolean
option was used.

5 REF_SET is a structure used for identifying
the searching universe (or set) wherein,

7 PTR is pointer to set to search within

7 S# is a bit on if the set to be searched
is a pseudo-set.

5 CORRESSIT# is the value of the set resulting
frcm this pseudo-set.

5 LISTPNTV is a pointer to the search list
structure for this pseudo-set.

5 PARSED is a pointer to a parsing structure for
toolean-created pseudo-sets.

5 DELETED is a bit on if this pseudo-set has
teen deleted.

5 FIEIDNAM is the field name to be tested.

5 OPCODE is a value of the operator to be used
for the test, as follows:

1. greater than
2. less than
3. ecual
4. greater than or equal

PAGE 166

5. less than or equal
6. not equal
7. tetween
8. containing

5 VALUES is a pointer to test values; this
points to VALUTAB.

3 SRCH_IN_PROGRESS is a bit on if a search is being
executed.

3 IFSO is set on if any pseudo-set is to be
printed.

3. SICTERBOR is a bit on if error occurs in SELECT
during execution of search.

3. SLCT FINISH is a bit on if all SELECT functions
are complete during execution of search.

1. St XREFS is a bit array used to record the S#'
which reference the S# in question.

1. SPRNTAE is a table of record parameters of an
St.

3. FORMAT is a table of record format
parameters.

5. TYPE

5. FIEST 5. LAST

3. NEXTSPENTAE is a pointer to next SPRNTAB
structure.

1. VALUE_ I is set for adjustment of valutab at
allocation.

1. VALUTAB is a table of pointers to values.

3. #OF is number of pointers in this table.

3. VALUPTR is an array of pointers to values.

1. VALUE SI E is set for size of value at
allocation.

1. VALUE is a table containing a value to be used
durino search. Pointer is in VALUTAB.

3. SI E is length of value.

Page intentionally left blank

25- ,MAXIM NUMBER OF PSEUDO-SETS ALLOWED

3 ', NUMBER OF CURRENT PSEUDO-SETS

l] SEARCH IN PROGRESS INDICATOR

S1] AT LEAST ONE RECORD NEEDED

PSEUDO-SET NUMBER

EXPRESSION

RECORD PARMS. PTR.
CREATOR BITS
REFERENCE SET

REF. SET IS S#

RESULTANT SET #
STEMP. SEARCH LIST

PARSE INFO. PTR.

1 -'S01 5 IF AGE=21' 10 5 0 8 LOCN. 0 AGE 3 LOCN.

2 'S02 5 IF MAN=Y' 10 5 0 9 LOCN. O MAN 3 LOCN.

3 'S03 S01*S02' LOCN. 01 2 1 10 LOCN. 0

VALUE(S)PTR. TABLE
TEST OP. CODE

25
FIELD NAME
DELETED BIT

RECORD PARAM. VALUE(S) PTR.

(BASED) TABLE (BASE) TABLE

FORMAT NO. OF PTRS. VALUE 1

RANGE LOCN1
LOCN. OF NEXT TABLE I VALUE2

LOCNn
VALUE,

Figure 1. SCHEMATIC DIAGRAM

/

PAGE 169

TOPIC F.19 - DATA RETRIEVAL

A. DATA SET NAME:

COL FORM - Columnar Format Definition Table

B. CREATED BY:

RDBFORM - the FORMAT command

C. TYPE OF FILE:

(4) Table

D. ORGANIZATION:

Structure containing miscellaneous items, a linear
array, and an adjustable array of structures.

E. KEY IDENTIFIER (CONTROL FIELD):

COL_ FORM is the major structure name.

F. RECORD LENGTH:

1340 bytes plus 40 bytes per field specification, i.e.,
1540 bytes minimum (5 field specifications) to 3980
bytes maximum (66 field specifications).

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

A columnar format definition table, COL_FORM, contains
coded specifications for a columnar display. It is
used by the DISPLAY and PRINT commands and may be
revised by the FOFRAT command. The optional line for
the page number, lines for titles, and lines for
headers hold literal text for output. For each field
specified, the field name, column, vidth, summary
requirements, tally, and summation values are carried.
(Average is not carried in COLFORM; it is computed in
DISPLAY or PRINT.)

1. PL/I DECLARATION:

DECLARE
1 COL FORM BASED(COL_BASE), /*COUUMNAB FORMAT SPECS */
3 LINESIZE FIXED BIN(31), /*SCRNCOL OR 132
3 RECORD_COUNT FIXED BIN(31) ,/*INIT(O)

PAGE 170

3 TOP,
5 (PAGE#, /*1 OR 0 LINES */

#TITLES, /*0 CR HORE LINES
#HEADERS, /*0 OR MORE LINES */
DEFAULT_HDR)FIXED BIN,/*O OR RELATIVE HEADER LINE*/

5 LINE(10) CHAR(132),
3 COLGIVEN BIT(1), /*1: FIELD COLUMNS GIVEN */

/*0: FIELD COLUMNS DEFALTD*/
3 OFIELDS FIXED BIN,
3 FIELD(I REFER(CCLFCORN.#FIELDS)),

5 NAME CHAR(8),
5 COLUMN FIXED BIN, /*FOR TRUNCATION INDICATOR*/

/*USE COLUMN+1...FOR VALUE*/
5 WIDTH FIXED BIN, /*WITHOUT */

/*TRUNCATION INDICATOR
5 ELEMENT_LIMIT FIXED BIN,/*FOR RETRIEVAL
5 ELEMENTTALIY,

7 REQUIRED BIT(1), /*INIT('O'B) */
7 # FIXED BIN(31), /*INIT(0) */

5 ELEMENT_SUM,
7 REQUIRED BIT(1), /*INIT('O'B)
7 ZONED BIT(1) /*1: ZONED VALUE (INIT) */

/*0: BINARY VALUE $/
7 VALUE FLOAT EIN(53), /*INIT(0) */

5 ELEMENT AVERAGEREQUIRED
BIT i); /*INIT('0'B) */

PAGE 171

TOPIC F.20 - DATA RETRIEVAL

A. DATA SET NAME:

FIELDS Display Format

B. CREATED BY:

FIELDS - RDBFLDS

C. TYPE OF FILE:

Terminal Display (fageable)

D. ORGANIZATION:

Not Applicable

E. KEY IDENTIFIER (CORTROL FIELD):

Not Applicable

F. RECORD LE4GTR:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This terminal display is created to display the names
of the fields available to him from the current file.
A title, identifying the display, is generated,
followed by the field names. The eight character
names, flagged by an asterisk, if indexed, and
separated by a blank, are grouped into SCRNWTH size
lines before they are written to the display. As each
subfile is encountered, a heading, identifying it and
its control field, is generated.

PAGE 172

TOPIC F.21 - RETRIEVAL

A. DATA SET NAME:

LIMIT

B. CREATED BY:

The module whose name is formed by concatenating "RL"
to the data base name i.e. "PLERTS". The writeup on
creating this module is in the DBA User's Guide.

C. TYPE OF FILE:

table.

D. ORGANIZATION:

PL/I Data Structure

F. KEY IDENTIFIER (CCNTROLI FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The LIMIT strvcture contains the anchor key subfield
names, their starting position within the key, and
their length. This table is used by the LIMIT command
when limiting a set.

I. PL/I DECLARATION:

DECLARE
1 LIMIT EXTERNAL CONTROLLED, /* DEFINE THE TAB*/

3 KEY SIZE BIN FIXED, /* LENGTH OF FORMATTED KEY.*/
3 #_ENTRIES EIN FIXED, /* NUMBER OF SUBFIELDS

/* DEFINED ON THE ANCHOR KEY. */
3 FIELD (16), /* ONE ENTRY FOR EACH SUBFIELD*/

5 NAME CHAR (8) VAR, /* NAE OF SUBFIELD. */
5 START FIN FIXED, /* START OF SUBFIELD,

/* WHERE 1 = FIRST CHARACTER */
/* POSITION OF THE KEY. /

5 LNGTH FIN FIXED, /* LENGTH OF SUBFIELD. /
5 TEST BIT (1), /* WHETHER OR NOT TO APPLY */

PAGE 173

/* THIS TEST WHEN LIMIT IS /
CALLED. */

5 VALUE (2) CHAR (50) VAB;
/* THE VALUES TO COMPARE A
/* KEY SUBFIELD AGAINST. /

PAGE 174

TOPIC F,22 - RETRIEVAL

A. DATA SET NAME:

LIMIT Command Display Format

B, CREATED BY:

RDBLT

C. TYPE OF FILE:

Terminal Display

D. ORGANIZATION:

Not Applicable

7. KEY IDENTIFIER (CCNTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

B. PURPOSE:

This display allcws the user to view the new set
created by LIMIT.

I. SAMPLE DISPLAY:

SET# XRETS EXPRESSION PAGE 1
XX XXXX XXXXXXXxXXXXXXXXXXXX

PAGE 175

TOPIC G.1 - USAGE STATISTICS

A0 DATA SET NAME:

STATIC Data Set Descriptors

B. CREATED BY:

Command System and Maintenance System

C. TYPE OF FILE:

Dataplex

D. ORGANIZATION:

VISAM

E. KEY IDENTIFIER (CCONTROL FIELD):

Not Applicable

F. RECORD LENGTH:

4000/V

G. BLOCKING FACTOR:

Not Applicable

B, PURPOSE:

Maintain system statistics:

1. Retention of Statistics

In order to maintain the usage statistics, a file
is required; and, in order to enhance the usage of
these statistics (to interface smoothly with the
NASIS system), a data base is required. With the
statistics on a data base, the full power of the
NASIS system can be used to manipulate them. If
any special retrieval or report programs are
required, then, currently, DBPL/I and TSPL/I are
available; and the Report Generator and Linear
Search features are also available.

Each TSS-ID jcined to the NASIS system will have
its cun statistics data base, and it can be
shared with cther TSS-ID's just as any other data
base.

1"76

The name of the statistic data base will follow a
uniform format for each TSS-ID Joined to NASIS.
That is, the name of the statistic data base will
be STATIC and the fully qualified data base name
will follow the standard naming conventions, eg,

tss-id.STATIC.STATIC#
tss-id.SIATIC.STATIC

for the descriptors and anchor file,
respectively.

This design also facilitates the integrity and
security of the statistic file in that only the
owner or those permitted by the owner can access
the file.

2. Accumulation of Statistics

The STATIC data base will be composed of two
different record types. The data required, and
how it will be kept, is as follows:

a. KEY

SEPARATE - A single character which will
distinguish the record type. A
value of zero will indicate a
maintenance record. A value of one
will indicate a retrieval record.

IDENTIFIER - For maintenance records, it will
be the data base name padded with
dollar signs. For retrieval
records, it will be the NASIS-ID
padded with asterisks (to eight
characters). Appended to the
NASIS-ID will be the data base
owner's TSS-ID and the name of the
inverted index file.

b. The maintenance fields are as follows:

IOTAITRE - the number of transactions
processed.

ANCOUNT - the number of records on the
anchor file.

TOTALRUN - the number of maintenance runs.

BAINDATE - the date of each maintenance run:

PAGE 177

element 1 will be the dates of the
data base creation, elements 2
through 13 will be the dates of
individual maintenance runs. After
the dates have been filled, the
second one will be dropped and the
newest date added on the end. This
field is variable-length with
fixed-length elements. There is a
maximum of thirteen elements.

TRANCNEW

TRANCDEL

TRANCUPD

TRSUBNF1

IRSUBDEL

TRSUEPf

TRINVNEW

TRINVEEL

TRINVUPD

- where TR indicates transaction;
ANC, the anchor file; SUB, the
subrecord files; INV, inverted
files; NEW, new records; DEL,
deletions; and UPD, updates.

These are the transaction count fields
required for maintenance statistics. These
fields will be used in conjunction with the
data field. They will also have a maximum of
thirteen elements. The elements will
correspond directly with the date field and
will represent the number of that given type
of transaction encountered during the
maintenance run. When all of the elements
are present, the next count inserted will
cause the second count to be added to the
first element and the second element dropped.
The newest element will go on the end.

c. The retrieval fields are:

CONNTIME - the connect time

PAGE 178

CPUTIE - the CPU time

TOTALES - number of sessions

ETRATIEN - the strategy length

STRATSTR - the number of strategies stored

STARDTE - the date of the first terminal
session

LASTDATE - the date of the last terminal
session

STRATNME - the names of the stored strategies
- maximum of four.

NOTE: The eight fields above are to be
accumulated for each NASIS-ID. There
may be many records for each NASIS-ID;
therefore, these statistics will be kept
in a special record. The OWNER-ID and
the inverted file name in this special
record will be equal to blanks.

#EXPANDS - number of EXPANDS per session

#SELECIS - number of SELECTs per session

RSEARCHS - number of SEARCHes per session

4CORECTS - number of CORRECTs per session

SESSDATE - the date of each session

These field all contain a maximum of thirteen
elements. The first element represents an
accumulator and contains the total for all
occurrences up to the SESSDATE, which is the date
of the last ejected session of the list (the
earliest session). Regardless of the actual
number of sessions within one calendar day, the
statistics will be accumulated as if there were
caly one session.

All of the maintenance statistics will be
automatically updated with the Load/Create program
and the Maintenance Mainline program. If the data
base owner wishes to modify certain data
pertaining to the maintenance statistics, he has
the ability to use the CORRECT command to update
the STATIC data base interactively.

PAGE 179

All cf the retrieval statistics will be
automatically updated with the FINISH module of
the command system. If required, at maintenance
time, a 'snapshot' of the statistics will be
printed, If the data base owner (system manager)
wishes to modify certain data pertaining to the
retrieval statistics, he has the ability to use
the CORRECT command to interactively update the
STATIC data tase.

PAGE 180

APPENDIX A.

The STATIC data base is composed of the following fields:

A. KEY

1. Alphanumeric.
2. Fixed field.
3. Length of 24 bytes.

a. First byte is maintenance or retrieval record
indicator.
1. O = maintenance record.

a. data base name left justified.
b. remainder padded with *$'s.

2. 1 = retrieval record.
a. NASIS-ID//ONER-ID//DATA BASE

file-name.
1. The NASIS-ID is eight

characters long and padded
with I'*s.

2. The OWNER-ID is really a
TSS-ID, eight characters long
and padded with '*'s.

3. The data base file-name is
seven characters long and
conforms to the data base -
dataset naming conventions.

B. TOTALTRN (Maintenance)
1. Alphanumeric
2. Fixed field
3. Length of 6 bytes
4. Contains the total number of transactions.

C. ANCOUNT (Maintenance)
1. Alphanumeric
2. Fixed field.
3. Length of 6 bytes.
4. Contains number of records on the anchor file.

D. TOTALRUN (Maintenance)
1. Alphanumeric.
2. Fixed field.
3. Length of 3 bytes.
4. Contains the number of maintenance runs.

E. MAINDATE (Maintenance)
1. Alphanumeric.
2. Fixed element,

a. Total of 13 elements, each 6 bytes long.
b. In the form iM/DD/YY to indicate the month,

day, and year of each maintenance run.

PAGE 181

Element 1 will contain the data base creation
date while elements 2-13 will be the dates of
the individual maintenance runs. After the
dates have been filled, the second one will
be dropped and the newest date added to the
end.

3. Total length of 78 bytes.

F. TRANCNEV (Maintenance)
1. Alphanumeric.
2. Fixed elements.

a. Each 6 bytes long.
b. Maximum of 13 elements.

3. Total length of 78 bytes.

G. TRANCDEL (Maintenance)
1. Alphanumeric.
2. Fixed element.

a. Each 6 bytes long.,
b. Maximum of 13 elements.

3. Total length of 78 bytes.

H. TRANCUPD (Maintenance)
1. Alpharmeric.
2. Fixed element.

a. Each 6 bytes long.
b. Maximum of 13 elements.

3. Total length of 78 bytes.

I. TRSUBNEV (Maintenance)
1. Alphanumeric.
2.. Fixed element.

a. Each 6 bytes long.
b. Maximum of 13 elements.

3. Total length of 78 bytes.

J. TESUBDEL (Maintenance)
1. Alphanumeric.
2. Fixed element.

a. Each 6 bytes long.
b. Maximum of 13 elements.

3. Total length of 78 bytes.

K. TRSUBUPD (Maintenance)
1. Alphanumeric.
2. Fixed element.

a. Each 6 bytes long.
b. Maximum of 13 elements.

3. Total length of 78 bytes.

L. TRINVNEV (Maintenance)
1. Alphanumeric.
2. Fixed element.

PAGE 182

a, Each 6 bytes long.
b. Maximum of 13 elements.

3. Total length of 78 bytes.

q. TRINVDEL (Maintenance)
1. Alphanumeric.
2. Fixed element.

a.i Each 6 bytes long.
b. maximum of 13 elements.

3. Total length of 78 bytes.

N. TRINVUPD (Maintenance)
1. Alphanumeric.
2. Fixed element.

a. Each 6 bytes long.
b. maximum of 13 elements.

3. Total length of 78 bytes.

NOTE: Items F through N are transaction count fields
for the maintenance statistics and correspond directly
to MAINDATE.

TR indicates TRANSACTION
ANC indicates ANCHOR FILE
INV indicates INVERTED FILE
NEW indicates NEW RECORDS
DEL indicates DELETIONS
UPD indicates UPDATES

O. CONNTIME (Retrieval)
1. Alphanumeric.
2. Fixed field.
3. Length of 10 bytes.
4. Contains connect time.

P. CPUTIME (Retrieval)
1. Alphanumeric.
2. Fixed field.
3. Length of 10 bytes.
4. Contains total CPU time.

Q. TOTALSES (Retrieval)
1. Alphanumeric.
2. Fixed field.
3. Length of 10 bytes.
4. Contains total number of sessions.

R. STRATLEN (Retrieval)
1. Alphanumeric.
2. Fixed field.
3. Length of 6 bytes.
4. Contains strategy length.

PAGE 183

S. STRATSTR (Retrieval)
1. Alphanumeric.
2. Fixed field.
3. Length of 1 byte.
4. Contains number of strategies stored.

T. STRATNME (Retrieval)
1. Alphanumeric.
2. Fixed element.

a, Each 35 bytes long.
b. Maximum of 4 elements.

3. Total length of 140 bytes.
4, Contains names of.stored strategies.

U. STARTDTE (Retrieval)
1. Alphanumeric.
2. Fixed field.
3. Length of 6 bytes.
4. Contains date of first terminal session.

V. LASTDATE (Retrieval)
1. Alphanumeric.
2. Fixed field.
3. Length of 6 bytes.

NOTE: The right fields above are accumulated for each
NASIS-ID. The owner-ID and the file-name have no
meaning.

Therefore, the KEY of the record where these statistics
are meaningful will be composed of an owner-ID and a
file-name which are blank.

W. #EXPANDS (Retrieval)
1. Alphanumeric.
2, Fixed element.

a. Each 6 byters long.
b. Baximum of 13 elements.

3. Total length of 78 bytes.

X. #SELECTS (Retrieval)
1.. Alphanumeric.
2. Fixed element.

a, Each 6 bytes long.
b. Maximum of 13 elements.

3. Total length of 78 bytes.

Y. #SEARCHS (Retrieval)
1. Alphanumerics.
2. Fixed element.

a. Each 6 bytes long.
b. Maximum of 13 elements.

3. Total length of 78 bytes.

PAGE 184

-Z. CORECTS (Retrieval)
1, Alphanumerics.
2. Fixed element.

a, Each 6 bytes long.
b. Maximum of 13 elements.

3. Total length of 78 SESSDATE (Retrieval)

AA, SESSDATE (Retrieval)
1. Alphanumerics.
2. Fixed element.

a. Each 6 bytes long.
b. Maximum of 13 elements.

3. Total length of 78 bytes.

NOTE: In the last 5 fields there is a one for one
correspondence in the elements.

first SESSDATE - the date of the newest session in
the accumulated counts.

first (others) - the accumulated counts on all
indicated.

Regardless of the actual number of sessions within one
given calendar day, the statistics will be accumulated
as if there were cnly one session.

When (during UPDATE) a record is encountered with the
variable fields having all 13 elements filled, the
'snapshot' of the given record will be taken. The last
12 elements will then be cleared, by summing them and
adding them to the first element, the first element
SESSDATE will be made equal to the last element
SESSDATE,

PAGE 185

TOPIC G.2 - USAGE STATISTICS

A. DATA SET NAME:

Maintenance Statistics Report Format

B. CREATED BY:

STATIC Report (RDEPRVTM)

C. TYPE OF FILE:

VS (print)

D. ORGANIZATICN:

Sequential

E. KEY IDENTIFIER (CCNTROL FIELD):

Not Applicable

FP. RECORD LENGTH:

133 Bytes

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

To display (via listing) the status of the maintenance
statistics.

MAINTENANCE STATISTICS FOR SYSTEMS MANAGER ** 01/11/73 PAGE 1

DATAPLEX TOTAL ANCHOR NUMBER TRANS MAINTENANCE FILEPLEX SUBPLEX XPLEX

NAME TRNS RECORDS RUNS RUN DATES ADDS DELETES UPDATES ADDS DELETES UPDATES ADDS DELETES UPDATES

ASRD1$ 3,132 1 12/19/72 3,132 -

FILEPLEX ADDS DELETES UPDATES

TOTAL 3,132 FOR ALL RUNS

AVERAGE 3,132 PER RUN

/

5-,

/-

PAGE 187

TOPIC G.3 - USAGE STATISTICS

A. DATA SET NAME:

Retrieval Statistics Report Format

B, CREATED BY:

Report Print (RDBPBNTR)

C. TYPE OF FILE:

VS (print)

D. ORGANIZATICN:

Sequential

E. KEY IDENTIIER (CCNTROl FIELD):

Not Applicable

F. RECORD LENGTH:

133 Bytes

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

To display (via listing) the status of the retrieval
statistics.

RETRIEVAL STATISTICS 01/03/73

NASISID CONN-TIME CPU-TIME # STRAT STORED OWNER FILE FIELD ACTUAL TOTAL NUMBER OF

HR:MM:SC HR:MM:SC:MS SES LENGTH ID NAME NAME EXP SEL SRCH CORR

NE01 0:53:30 0:00:48:790 5 0 0

SAOWNER ASRD1$A AUTHOR 3 .0 0 0 "

SAOWNER ASRD1$B KEYWORDS 13 0 0 0

SAOWNER DB2TDBA EMPAGE 1 0 0 0

SAOWNER DB2TDBB TOTALCAR 1 0 0 0

SAOWNER DB2TDBC KIDAGE 1 0 0 0

SAOWNER DB2TDBD PET 1 0 0 0

SAOWNER DB2TDBE SVCDATE 1 0 0 0

<3
7--o 7- .. / ,

PAGE 189

TOPIC G,4 - USAGE STATISTICS

A. DATA SET NAME:

Snapshot Statistics Report Format

B. CREATED EBY:

Snapshot Print (RDECHKPT)

C. TYPE OF FILE:

VS (print)

D. ORGANIZATICN:

Sequential

E. KEY IDENTIFIER (CCNTROL FIELD):

Not Applicable

F. RECORD LENGTB:

133 Bytes

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

To display (via listing) those records which have
undergcne the reinitialization process.

SNAPSHOT (CHECKPOINT)OF RETRIEVAL STATISTICS RECORDS BEFORE REINITIALIZATION

12/18/72 PAGE 1

LISR ID CONN-TIME CPU-TIME # STRAT OWNER-ID FIELD FILE SESSION # # # #

HR:MIN:SC HR:MN:SC:MS SES LENGTH NAME NAME DATE EXPANDS SELECTS SEARCHS CORRECTS

NEOl :19:40 0:00:12:399 2 SAOWNER KEYWORDS ASRDI$B 721215

721215 1

721215

721215

721215

721215

721215

721215

721215

721215

721215

721215

721215 1

Q721215J;'

PAGE 191

TOPIC H.1 - IMMEDIATE COMMANDS

A. DATA SET NAME:

NASIS Message File

B. CREATED BY:

Not Applicable

C. TYPE OF FILE:

VISAM

D. ORGANIZATION:

Sequential

E. KEY IDENTIFIER (CCWTRC FIELD):

The fifteen byte key is composed of the eight byte
message key concatenated to the seven byte line
number.

F. RECORD LENGTH:

V(132)

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This data set contains the NASIS system messages used
by the various modules for prompting and diagnostic
messages,

PAGE 192

TOPIC H,.2 - IMMEDIATE CCERANDS

A. DATA SET NAME:

Strategy Data Set

B. CREATED BY:

RTSSTRT

C. TYPE OF FILE:

VISAM

D . ORGANIZATICN:

Regional Sequential

E. KEY IDENTIFIER (CGCTROL FIELD):

Strategy Name (16 characters)

F. RECORD LENGTH:

328

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

To contain the stored strategies and formats created by
and used by the various NASIS commands,

PAGE 193

TOPIC H.3 - IMH1~IATE COMHANDS

A. DATA SET NAME:

Strategy Display Format

B. CREATED BY:

RDBSTRT

C. TYPE OF FILE:

Screen Display

D. ORGANIZATION:

Header = STRATEGY name (centered)

Data Lines = full Nidth, word split

Overflow Lines = indented three characters

Page Overflow = full record

E. KEY IDENTIFIER (CONTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

To display the contents of the data lines comprising a
stor-ed- strategy

C3

PAGE 194

TOPIC H.4 - IMMEDIATE CONHANDS

A. DATA SET NAME:

Strategy Names Display Format

B. CREATED BY:

RDBSTRT

C. TYPE OF FIlE:

Screen Display

D. ORGANIZATICN:

Data Lines = ccmplete 16 character strategy names
separated by two blanks (as many as will fit on a
line).

E. KEY IDENTIFIER (CCNTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

B. PURPOSE:

To display the names of the strategies present in the
strategy data set.

PAGE 195

TOPIC 8,5 - IMNEfIATE COMMANDS

A. DATA SET NANE:

User Profile Table

B. CREATED EY:

TS2-Supervisor

C. TYPE OF FILE:

Segmented Array

D. ORGANIZATICN:

Segment - 1 (Synonyms) - sequential

Segment - 2 (Default Keywords) - sequential

Segment - 3 (Default-Data) - random

E. KEY IDENTIFIER (CCONTROL FIELD):

Not Applicable

F. RECORD LENGTH:

V (32,768)

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

To contain the user defined synonyms and defaults.

PAGE 196

TOPIC H.6 - IMMEDIATE CCMANDS

A. DATA SET NANE:

NASIS User Profile Dataset

B. CREATED BY:

TS2-Supervisor

C. TYPE OF FIIE:

VSAH

D. ORGANIZATICN:

Sequential

E. KEY IDENTIFIER (CCNTROL FIELD) :

Not Applicable

F. RECORD LINGTH:

V (32,768)

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

To contain the lists of user defined synonyms and
defaults for a particular NASISID.

PAGE 197

TOPIC H.7 - DATA RETRIEVAL

A. DATA SET NAHE:

VERETAE Tatle,

B. CREATED EY:

The NASIS modules which prompt for commands.

C. TYPE OF FIIE:

Table

D. ORGANIZATICN:

PL/I Data Structure

E. KEY IDENTIfIER (CCNTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H., PURPOSE:

1. VERETAE EXTERNAL CONTROLLED.
This table contains the information necessary to
associate a set of valid verbs (commands) and
their respective entry points.

2. # ENTRIES BINARY FIXED.
This field ccntains the count of the number
of valid entries in the list below.

2. SIZE BINARY FIXED.
This field contains the count of the number
of entries that can be contained in the list
telow.

2. SYMBOLIC ID CHARACTER (8).
This field contains the default symbol that
can be used to define user mritten extentions
to this list of verbs.

PAGE 198

2. CCEMAND (VERB COUNT).
This list is used to describe the commands
recognized by the defining module.

3, WANE CHARACTER (8).
This field contains the command name.

3, ROUTINE CHARACTER (8).
This field contains the name of the
entry point to be called when this
command is entered.

1. VEBBCOUNT BINARY FIXED.
This field most be set to the maximum number of
entries allowable in the verb list, before the
table is allocated.

I. PL/I DECLAEATION:

/8 GENERALIZED NASIS SYSTEM VERB TABLE /

DCL 1 VERBTAB EXT CONTECLLED, /*DEFINE THE VERB TABLE */
2 #_ENTRIES BIN FIXE, /*DEFINE THE CURRENT SIZE */
2 SIZE BIN FIXED, /*DEFINE THE MAXIMUM SIZE */
2 SYMBOLIC ID CHAR(8), /*DEFINE THE DEFAULT TERM */
2 CCOMAND(VERB_COUNT), /*DEFIVE THE VERB ENTRIES */

3 NAME CHAR(8), /*DEFINE THE VERB NAME
3 ROUTINE CHAR(8); /*DEFINE THE ROUTINE NAME */

DCL VERB COUNT BIN FIXED: /*DEFINE THE TABLE SIZE */

